
Simulink® Requirements™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Requirements™ User's Guide
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release R2018b)
March 2019 Online only Revised for Version 1.3 (Release R2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 1.6 (Release 2020b)
March 2021 Online only Revised for Version 1.7 (Release 2021a)
September 2021 Online only Revised for Version 1.8 (Release 2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Requirements Definition
1

Author Requirements in Simulink . 1-2
Author and Edit Requirements Content by Using Microsoft Word 1-4
Customize Requirements Browser View . 1-4
Filter Requirements Content . 1-4

Requirement Types . 1-6

Import Requirements from Third-Party Applications 1-7
Add Requirements to the Path . 1-7
Select an Import Mode . 1-7
Differences Between Importing and Direct Linking 1-10

Import Requirements from Microsoft Office Documents 1-11
Import Options for Microsoft Word Documents . 1-11
Import Options for Microsoft Excel Spreadsheets 1-13

Import Requirements from ReqIF Files . 1-16
Choosing an Import Mapping . 1-16
Importing Requirements . 1-18
Importing Links . 1-22
Mapping ReqIF Attributes in Simulink Requirements 1-23

Import Requirements from IBM DOORS Next . 1-27
Configure IBM DOORS Next Session . 1-27
Import DOORS Next Requirements . 1-27
Update Referenced Requirements . 1-30
Navigate from Referenced Requirements to Requirements in DOORS Next

. 1-31
Linking with Referenced Requirements . 1-32

Import Requirements from IBM Rational DOORS 1-33
Configure IBM Rational DOORS Session . 1-33
Import an Entire Requirements Module . 1-33
Import a Subset of Requirements from a Module 1-35
Update the Requirement Set . 1-35
Navigate Between Referenced Requirements and Requirements in IBM

Rational DOORS . 1-36

Export Requirements to ReqIF Files . 1-38
Choosing an Export Mapping . 1-38
Exporting Requirements . 1-40
Exporting Links . 1-41

iii

Contents

Define Requirements Hierarchy . 1-43
Requirement Sets . 1-43
Custom Attributes of Requirement Sets . 1-43

Create Requirement Set File by Using the Simulink® Requirements™ API
. 1-45

Customize Requirements with Custom Attributes 1-48
Define Custom Attributes for Requirement Sets 1-48
Set Custom Attribute Values for Requirements . 1-49
Edit Custom Attributes . 1-50
Custom Attributes for Referenced Requirements 1-50
Import Custom Attributes . 1-50
Limitations . 1-51

Update Imported Requirements . 1-52
Update a Requirement Set . 1-52
Update Requirements with Change Tracking Enabled 1-52
Considerations for Microsoft Word Documents . 1-53

Import and Update Requirements from a Microsoft Word Document . . 1-54

Export Requirement Sets and Link Sets to Previous Versions of Simulink
Requirements . 1-56

Export Requirement Sets . 1-56
Export Link Sets . 1-56

Use Command-line API to Document Simulink Model in Requirements
Editor . 1-57

Round-Trip Importing and Exporting for ReqIF Files 1-73
Considerations for Importing Requirements . 1-73
Edit Imported Content . 1-73
Link Requirements to Items in MATLAB and Simulink 1-75
Considerations for Exporting Requirements . 1-75

Best Practices and Guidelines for ReqIF Round Trip Workflows 1-77
Managing Requirement Custom IDs . 1-77
Guidelines for Updating Referenced Requirements Content 1-77
Guidelines for Editing Referenced Requirements Content 1-77
Guidelines for Adding Details to Imported Requirements 1-77
Guidelines for Exporting Requirements to ReqIF Files 1-77

Manage Custom Attributes for Requirements by Using the Simulink®
Requirements™ API . 1-79

Create and Edit Attribute Mappings . 1-84
Edit the Attribute Mapping for Imported Requirements 1-84
Specify Default ReqIF Requirement Type . 1-86
Specify ReqIF Template . 1-86

Import Requirements from IBM Rational DOORS by using the API 1-87

iv Contents

Requirements Traceability and Consistency
2

Link Blocks and Requirements . 2-2
Work with Simulink Annotations . 2-4

Track Requirement Links with a Traceability Matrix 2-5
Generate a Traceability Matrix . 2-5
Modify the Traceability Matrix View . 2-9
Work with Links in the Traceability Matrix . 2-14
Export the Traceability Matrix . 2-17
Work Programmatically with a Traceability Matrix 2-17

Visualize Links with a Traceability Diagram . 2-18
Generate a Traceability Diagram . 2-18
Use the Traceability Diagram . 2-22
Modify the Traceability Diagram View . 2-23
Export the Diagram . 2-25

Assess Allocation and Impact . 2-27
Assess Requirements Allocation . 2-27
Visualize Change Propagation . 2-29

Requirement Links . 2-32
Linkable Items . 2-32
Link Types . 2-33
Review Requirement Links . 2-36
Resolve Links . 2-36
Load Link Information . 2-36
Unload Link Information . 2-38
Delete a Link Set . 2-39

Define Custom Requirement and Link Types . 2-40
Create and Register Custom Requirement and Link Types 2-40
Inherited Functionality from the Built-In Type . 2-40
Set the Type in the Requirements Editor . 2-41

Customize Links with Custom Attributes . 2-43
Define Custom Attributes for Link Sets . 2-43
Set Custom Attribute Values for Links . 2-44
Edit Custom Attributes . 2-45

Requirements Consistency Checks . 2-46
Check Requirements Consistency in Model Advisor 2-46

Manage Navigation Backlinks in External Requirements Documents . . 2-50
Insert Backlinks in External Requirements Documents 2-50

Use Command-line API to Update or Repair Requirements Links 2-52

Manage Custom Attributes for Links by Using the Simulink®
Requirements™ API . 2-65

Make Requirements Fully Traceable with a Traceability Matrix 2-70

v

Modeling System Architecture of Small UAV . 2-84

Requirements-Based Verification
3

Review Requirements Implementation Status . 3-2
Implement Functional Requirements by Linking to Model Elements 3-2
View the Implementation Status . 3-3

Review Requirements Verification Status . 3-6
Verify Functional Requirements . 3-6
Display Verification Status . 3-7
Update Verification Status by Running Tests or Analyses 3-8
Include Verification Status in Report . 3-8

Validate Requirements by Analyzing Model Properties 3-9

Justify Requirements . 3-16

Linking to a Test Script . 3-19
Linking to a Test Script Using the Outgoing Links Editor 3-19
Linking to a Test Script Using the API . 3-22
Integrating Results from a MATLAB Unit Test Case 3-25

Include Results from External Sources in Verification Status 3-27
How to Populate Verification Results from External Sources 3-27

Linking to a Result File . 3-30
Open Example Files . 3-30
Create and Register a Custom Link Type . 3-31
Create a Requirement Link . 3-32
View the Verification Status . 3-34

Integrating Results from a Custom-Authored MATLAB Script as a Test
. 3-36

Integrating Results from an External Result file 3-40

Integrating results from a custom authored MUnit script as a test 3-44

Fix Requirements-Based Testing Issues . 3-48

Change Tracking and Team-Based Workflows
4

Requirements-Based Development in Projects . 4-2
Organizing Requirements, Models, and Tests . 4-2

vi Contents

Track Changes to Requirement Links . 4-3
Enable Change Tracking for Requirement Links . 4-3
Review Changes to Requirements . 4-3
Resolve Change Issues . 4-5
Add Comments to Links . 4-6
Manually Check for Using Links Change Tracking 4-7

Compare Requirements Sets . 4-8
Compare Two .slreqx Simulink Requirements Sets 4-8
Review Changes in Source-Controlled Files . 4-8

Compare Link Sets . 4-9

Report Requirements Information . 4-10
Report Navigation Links . 4-12

Three-way AutoMerge Solution for Requirement Set and Link Set 4-13
Configure Git environment for AutoMerge . 4-13
Select and Merge Branches in Git . 4-13
Limitations . 4-13

Merge Requirement Set and Link Set Files . 4-15

Requirements Management Interface Setup
5

Configure Simulink Requirements for Interaction with Microsoft Office
and IBM Rational DOORS . 5-2
Configure Simulink Requirements for Microsoft Office 5-2
Configure Simulink Requirements for IBM Rational DOORS 5-2
Configure Simulink Requirements for IBM DOORS Next 5-2

Requirements Link Storage . 5-4
Save Requirements Links in External Storage . 5-4
Load Requirements Links from External Storage 5-5
Move Internally Stored Requirements Links to External Storage 5-5
Move Externally Stored Requirements Links to the Model File 5-5
External Storage . 5-6
Guidelines for External Storage of Requirements Links 5-6
Copying Model Objects and their Linked Requirements 5-7

Supported Requirements Document Types . 5-8

Requirements Settings . 5-10
Selection Linking Tab . 5-10
Filter Requirements with User Tags . 5-11

Migrating Requirements Management Interface Data to Simulink®
Requirements™ . 5-16

vii

Microsoft Office Traceability
6

Link to Requirements in Microsoft Word Documents 6-2
Link a Requirement in Word to a Simulink Block . 6-2

Link to Requirements in Excel Workbooks . 6-7
Navigate from a Model Object to Requirements in an Excel Workbook . . . 6-7
Create Requirements Links to the Workbook . 6-7
Link Multiple Model Objects to a Microsoft Excel Workbook 6-8
Change Requirements Links . 6-8

Navigate to Requirements in Microsoft Office Documents from Simulink
. 6-10

Enable Linking from Microsoft Office Documents to Simulink Objects . . . 6-10
Insert Navigation Objects in Microsoft Office Documents 6-11
Customize Microsoft Office Navigation Objects . 6-11
Navigate Between Microsoft Office Requirement and Model 6-12

Managing Requirements for Fault-Tolerant Fuel Control System
(Microsoft Office) . 6-14

Requirements Traceability with IBM Rational DOORS
7

Configure Simulink Requirements for IBM Rational DOORS Software . . 7-2
Manually Install Additional Files for DOORS Software 7-2
Address DXL Errors . 7-3

Link with Requirements in IBM DOORS Next . 7-4

Link and Trace Requirements with IBM DOORS Next 7-26
Configure IBM DOORS Next Session . 7-26
Linking with Referenced Requirements . 7-26
Directly Linking DOORS Next Requirements . 7-27
Specifying and Updating the IBM DOORS Next Configuration 7-32

Navigate to Requirements in IBM Rational DOORS Databases from
Simulink . 7-35

Enable Linking from IBM Rational DOORS Databases to Simulink Objects
. 7-35

Insert Navigation Objects into IBM Rational DOORS Requirements 7-35
Navigate Between IBM Rational DOORS Requirement and Model Object

. 7-37
Why Add Navigation Objects to IBM Rational DOORS Requirements? . . . 7-38
Customize IBM Rational DOORS Navigation Objects 7-38

Synchronize Simulink Models with IBM Rational DOORS Databases by
using Surrogate Modules . 7-39

Synchronize a Simulink Model to Create a Surrogate Module 7-39

viii Contents

Create Links Between Surrogate Module and Formal Module in an IBM
Rational DOORS Database . 7-40

Resynchronize IBM Rational DOORS Surrogate Module to Reflect Model
Changes . 7-41

Navigate with the Surrogate Module . 7-41
Customize IBM Rational DOORS Synchronization 7-43
Synchronization with IBM Rational DOORS Surrogate Modules 7-48
Advantages of Synchronizing Your Model with a Surrogate Module 7-49

Working with IBM Rational DOORS 9 Requirements 7-50

Managing Requirements for Fault-Tolerant Fuel Control System (IBM
Rational DOORS) . 7-59

Simulink Traceability Between Model Objects
8

Link Model Objects . 8-2
Link Objects in the Same Model . 8-2
Link Objects in Different Models . 8-2

Link Test Cases to Requirements Documents . 8-3
Establish Requirements Traceability for Testing . 8-3

Link Simulink Data Dictionary Entries to Requirements 8-7

Link Signal Builder Blocks to Requirements and Simulink Model Objects
. 8-9

Link Signal Builder Blocks to Requirements Documents 8-9
Link Signal Builder Blocks to Model Objects . 8-10

Requirements Links for Library Blocks and Reference Blocks 8-13
Introduction to Library Blocks and Reference Blocks 8-13
Library Blocks and Requirements . 8-13
Copy Library Blocks with Requirements . 8-13
Manage Requirements on Reference Blocks . 8-13
Manage Requirements Inside Reference Blocks 8-14
Links from Requirements to Library Blocks . 8-15

Navigate to Requirements from Model . 8-16
Navigate from Model Object . 8-16
Navigate from System Requirements Block . 8-16

Link to Requirements Modeled in Simulink . 8-18

ix

MATLAB Code Traceability
9

Requirements Traceability for MATLAB Code Lines 9-2
Link MATLAB Code Lines to Requirements in a Requirement Set 9-2
Link MATLAB Code Lines to Requirements Information in External

Documents . 9-2
Enable or Disable Traceability Links Highlighting for MATLAB Code 9-3
Remove Traceability Links from MATLAB Code Lines 9-4
Traceability for MATLAB Code Lines . 9-4

Associate Traceability Information with MATLAB Code Lines in Simulink
. 9-6

URL and Custom Traceability
10

Requirement Links and Link Types . 10-2
Requirements Traceability Links . 10-2
Supported Model Objects for Requirements Linking 10-2
Links and Link Types . 10-2
Link Type Properties . 10-3
Outgoing Links Editor . 10-6

Custom Link Types . 10-8
Create a Custom Requirements Link Type . 10-8
Implement Custom Link Types . 10-13
Why Create a Custom Link Type? . 10-14
Custom Link Type Functions . 10-14
Custom Link Type Registration . 10-15
Custom Link Type Synchronization . 10-15

Implement RMI Extension for Support of Custom Document Type . . . 10-17

Review and Maintain Requirements Links
11

Highlight Model Objects with Requirements . 11-2
Highlight Model Objects with Requirements Using Model Editor 11-2
Highlight Model Objects with Requirements Using Model Explorer 11-3

Navigate to Simulink Objects from External Documents 11-4
Provide Unique Object Identifiers . 11-4
Use the rmiobjnavigate Function . 11-4
Determine the Navigation Command . 11-4
Use the ActiveX Navigation Control . 11-4
Typical Code Sequence for Establishing Navigation Controls 11-5

x Contents

View Requirements Details for a Selected Block 11-6
Identify Blocks with Links . 11-6
Configure Settings . 11-6
View Requirements Details . 11-6
Create a Requirement Annotation . 11-7

Generate Code for Models with Requirements Links 11-8
How Requirements Information Is Included in Generated Code 11-9

Create and Customize Requirements Traceability Reports 11-10
Create Requirements Traceability Report for Model 11-10
Customize Requirements Traceability Report for Model 11-11

Create Requirements Traceability Report for A Project 11-25

Validate Requirements Links . 11-26
Validate Requirements Links in a Model . 11-26
Validate Requirements Links in a Requirements Document 11-30
Validation of Requirements Links . 11-32

Delete Requirements Links from Simulink Objects 11-34
Delete a Single Link from a Simulink Object . 11-34
Delete All Links from a Simulink Object . 11-34
Delete All Links from Multiple Simulink Objects 11-34

Document Path Storage . 11-35
Relative (Partial) Path Example . 11-35
Relative (No) Path Example . 11-35
Absolute Path Example . 11-35

How to Include Linked Requirements Details in Generated Report . . . 11-37

Managing Requirements Without Modifying Simulink Model Files . . . 11-44

Requirements Management Interface
12

Verification and Validation
13

Test Model Against Requirements and Report Results 13-2
Requirements – Test Traceability Overview . 13-2
Display the Requirements . 13-2
Link Requirements to Tests . 13-3
Run the Test . 13-4
Report the Results . 13-5

Analyze a Model for Standards Compliance and Design Errors 13-7
Standards and Analysis Overview . 13-7

xi

Check Model for Style Guideline Violations and Design Errors 13-7

Perform Functional Testing and Analyze Test Coverage 13-9
Incrementally Increase Test Coverage Using Test Case Generation 13-9

Analyze Code and Test Software-in-the-Loop . 13-12
Code Analysis and Testing Software-in-the-Loop Overview 13-12
Analyze Code for Defects, Metrics, and MISRA C:2012 13-12
Test Code Against Model Using Software-in-the-Loop Testing 13-17

xii Contents

Requirements Definition

• “Author Requirements in Simulink” on page 1-2
• “Requirement Types” on page 1-6
• “Import Requirements from Third-Party Applications” on page 1-7
• “Import Requirements from Microsoft Office Documents” on page 1-11
• “Import Requirements from ReqIF Files” on page 1-16
• “Import Requirements from IBM DOORS Next” on page 1-27
• “Import Requirements from IBM Rational DOORS” on page 1-33
• “Export Requirements to ReqIF Files” on page 1-38
• “Define Requirements Hierarchy” on page 1-43
• “Create Requirement Set File by Using the Simulink® Requirements™ API” on page 1-45
• “Customize Requirements with Custom Attributes” on page 1-48
• “Update Imported Requirements” on page 1-52
• “ Import and Update Requirements from a Microsoft Word Document” on page 1-54
• “Export Requirement Sets and Link Sets to Previous Versions of Simulink Requirements”

on page 1-56
• “Use Command-line API to Document Simulink Model in Requirements Editor” on page 1-57
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73
• “Best Practices and Guidelines for ReqIF Round Trip Workflows” on page 1-77
• “Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

on page 1-79
• “Create and Edit Attribute Mappings” on page 1-84
• “Import Requirements from IBM Rational DOORS by using the API” on page 1-87

1

Author Requirements in Simulink
In this section...
“Author and Edit Requirements Content by Using Microsoft Word” on page 1-4
“Customize Requirements Browser View” on page 1-4
“Filter Requirements Content” on page 1-4

In Simulink® Requirements™, you organize your requirements in groups called requirement sets. In
each requirement set, you can create additional levels of hierarchy if you need to further describe a
requirement's details.

In this tutorial, you use the Requirements Editor to create a requirement set, organize related
requirements, and add requirements to the set.

Suppose that you are writing requirements for a controller model of an automobile cruise control
system. You develop these requirements using your company’s numbering standard (R1, R2, and so
on).

ID and Description Rationale
R1: The maximum input throttle is 100% The maximum value of the throttle from the

acceleration pedal can be no greater than 100%.
R2: Cruise control has a speed operation range Cruise control has a minimum and maximum

operating speed.
R2.1: The vehicle speed must be at least 40 km/h The speed of the vehicle must be at least 40 km/h

for the cruise control system to engage.
R2.2: The vehicle speed cannot be greater than
100 km/h

The maximum operational speed of the cruise
control system for the vehicle is 100 km/h.

Add these requirements to a model called crs_controller.

1 Open the project that includes the model and supporting files. At the MATLAB® command
prompt, enter:

slreqCCProjectStart
2 Open the model. At the command prompt, enter:

open_system('models/crs_controller')
3 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the

Requirements tab, click Requirements Editor.

The Requirements Editor displays the requirements in the Requirements Browser arranged by
requirement set. The crs_controller model has two requirement sets: crs_req_func_spec
and crs_req.

1 Requirements Definition

1-2

4 Add a requirement set in the Requirements Browser. From the Requirements Editor toolbar, click
New Requirement Set.

5 Save the requirement sets to external files. Save your requirement set to a writable location and
name it cruise_control_reqset.slreqx.

6 Add a requirement to your requirement set by selecting the requirement set and clicking Add
Requirement.

7 In the Details pane, under Properties, enter the details for the requirement. Enter the details
for the requirement:

• Custom ID: R1
• Summary: Max input throttle %
• Description: The maximum input throttle is 100%.

If you do not specify a custom ID, the Requirements Editor numbers requirements in order.
Custom IDs enable you to use your company standards for labeling requirements and to set the
numeric order. (Custom IDs cannot contain a # character.) You can also use an ID to help locate a
requirement when searching. Keywords aid in searching for a requirement.

8 Create the requirement R2. Click Add Requirement. Enter the details for the requirement:

• Custom ID: R2
• Summary: Cruise control speed operation range
• Description: Cruise control has a minimum and maximum operating speed.

9 Create child requirements for R2 by selecting R2 and clicking Add Requirement > Add Child
Requirement. Enter the details for the requirement:

• Custom ID: R2.1
• Summary: Minimum vehicle speed
• Description: The speed of the vehicle must be at least 40 km/h for the cruise control system

to engage.

 Author Requirements in Simulink

1-3

Repeat this step to add other child requirements to R2.

You can rearrange the hierarchy by using Promote Requirement or Demote Requirement.

Author and Edit Requirements Content by Using Microsoft Word
To author and edit the Description and Rationale fields of your requirements, open Microsoft®

Word from within the Requirements Editor or the Requirements Perspective View.

Note This functionality is available only on Microsoft Windows® platforms.

Using Microsoft Word to edit rich text requirements enables you to:

• Spell-check requirements content.
• Resize images.
• Insert and edit equations.
• Insert and edit tables.

On the Edit field toolbar, in either the Description or Rationale fields, click the icon. Save the
changes to your requirements content within Microsoft Word to see them reflected in Simulink
Requirements.

When you use Microsoft Word to edit requirements content, you cannot edit requirements in the
built-in editor.

Customize Requirements Browser View

You can view or hide columns in the Requirements Editor when you click Columns > Select
Attributes. Add, remove, and reorder attribute columns in the Column Selector. The view
configuration is saved across sessions. You can export view settings to a MAT-file by using the
slreq.exportViewSettings function and import them by using the
slreq.importViewSettings function. You can reset view configurations by using the
slreq.resetViewSettings function.

Filter Requirements Content
You can search requirements contenting by clicking Search. You can find specific requirements
within loaded requirement sets based on requirement attributes and descriptions.

1 Requirements Definition

1-4

Specify Filter Text Strings — As you enter text in the Search text box, the Requirements Browser
performs a dynamic search and displays the results. The search operation applies only to attributes
you choose to display in the Requirements Browser.

The text strings you enter must be consistent with the guidelines described in the following sections.

Case Sensitivity — By default, the Requirements Browser ignores case as it filters.

If you want the Requirements Browser to respect case sensitivity, put that text string in quotation
marks.

Specify Attributes and Attribute Values — To restrict the filtering to requirements with a specific
attribute, type the attribute name, followed by a colon. The Requirements Browser displays only the
requirements that have that attribute.

To filter for requirements for which a specific attribute has a specific value, type the attribute name,
followed by a colon (:), then the value. For example, to filter the contents to display only the
requirements where the Summary attribute has a value that includes Aircraft, enter Summary:
Aircraft (alternatively, you could put the whole string in quotation marks to enforce case
sensitivity).

Wildcards and MATLAB Expressions Are Not Supported — The Requirements Browser does not
recognize wildcard characters, such as *. For example, searching fuel* returns no results, even if
requirements contain the text string fuel.

Also, if you specify a MATLAB expression in the Search text box, the Requirements Browser
interprets that string as literal text, not as a MATLAB expression.

 Author Requirements in Simulink

1-5

Requirement Types
Each requirement or referenced requirement has a requirement type that specifies the role of the
requirement. The requirement type refers to the slreq.Requirement object Type property value or
the slreq.Reference object Type property value, depending on the object type.

When you create or import requirements in Simulink Requirements, you can specify the requirement
type in the Requirements Editor in the Type list, which is in the Details pane, under Properties.

Simulink Requirements provides these built-in requirement types:

• Functional: Classify requirements that are meant to be implemented or verified in your Model-
Based Design workflow. Functional requirements contribute to the Implementation or Verification
status of the requirement set that they are in.

• Container: Group requirements. Container requirements do not contribute to the Implementation
or Verification status of the requirement set that they are in. However, all of the functional
requirements under a container requirement contribute to the status.

• Informational: Provide supplemental information. Informational requirements and all
requirements under them do not contribute to the Implementation or Verification status of the
requirement set that they are in.

For more information about implementation and verification status, see “Review Requirements
Implementation Status” on page 3-2 and “Review Requirements Verification Status” on page 3-6.

You can also define custom requirement types. Custom requirement types must be a subtype of one of
the built-in types. The custom requirement type inherits some functionality from the built-in type,
including how the requirement type contributes to the implementation and verification statuses. For
more information, see “Define Custom Requirement and Link Types” on page 2-40.

See Also

More About
• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6
• “Define Custom Requirement and Link Types” on page 2-40

1 Requirements Definition

1-6

Import Requirements from Third-Party Applications
You can author requirements in third-party applications and import them to Simulink Requirements.
When you import requirements, you can migrate the requirements and manage them in Simulink
Requirements, or import the requirements as references to requirements called referenced
requirements and continue to manage them in the third-party application. Supported applications
include:

• Microsoft Word and Microsoft Excel®. See “Import Requirements from Microsoft Office
Documents” on page 1-11.

• IBM® Rational® DOORS®. See “Import Requirements from IBM Rational DOORS” on page 1-33.
• IBM DOORS Next. See “Import Requirements from IBM DOORS Next” on page 1-27.
• Applications that use the Requirements Interchange Format (ReqIF™). See “Import Requirements

from ReqIF Files” on page 1-16.

Note Microsoft Windows platforms support importing requirements from all applications listed
above. To import requirements from third-party applications on a Mac or Linux® platform, you must
use IBM DOORS Next or an application that uses ReqIF.

Add Requirements to the Path
Add requirements documents to the MATLAB path or project path. You can:

• Copy the requirements document to the MATLAB current folder.
• Add the parent folder of the requirements document to the MATLAB path.
• Update the Simulink Requirements path preference to always use the relative path.

For more information on setting path preferences for requirements documents, see “Document Path
Storage” on page 11-35.

Select an Import Mode
When you import requirements from third-party applications to Simulink Requirements, you can
migrate the requirements to Simulink Requirements or continue to manage your requirements in the
third-party application.

When you migrate your requirements to Simulink Requirements, you no longer need to use the third-
party application to make changes to your requirements.

If you choose to manage your requirements in the third-party application, you continue to make
changes to requirements in the third-party application. Then, you can update the referenced
requirements in Simulink Requirements to bring changes that were made in the third-party
application after the previous import. When you make changes in third-party application, the
imported referenced requirements are outdated in Simulink Requirements until you update them.
Simulink Requirements notifies you when a newer version of the source document is available.

Both import modes give you access to Simulink Requirements analyses, such as change tracking (see
“Track Changes to Requirement Links” on page 4-3), implementation status (see “Review
Requirements Implementation Status” on page 3-2), and verification status (see “Review
Requirements Verification Status” on page 3-6).

 Import Requirements from Third-Party Applications

1-7

Migrate Requirements to Simulink Requirements

If you want to migrate your requirements from the external requirements management application to
Simulink Requirements, when you import the requirements, clear the selection Allow updates from
external source.

Requirements are imported as slreq.Requirement objects and are represented by the requirement
icon () in the Requirements Editor and in the Traceability Matrix. Importing requirements as
slreq.Requirement objects allows you to freely edit, add, delete, and rearrange requirements.
Updates you make to the requirements in the third-party application are not reflected in Simulink
Requirements.

Note You can export your requirements back to third-party applications that support ReqIF files by
exporting requirements that are stored in Simulink Requirements to a ReqIF file.

1 Requirements Definition

1-8

Manage Imported Requirements with External Applications

If you want to continue to manage your imported requirement with an external application, select
Allow updates from external source when you import the requirements. The requirements are
imported as referenced requirements (slreq.Reference objects).

If someone makes changes to the external source document, you can update the referenced
requirements in Simulink Requirements. In the Requirements Editor, select the top import node,
represented by the Import node icon (). In the Details pane, under Requirement Interchange,
click Update. You will be prompted to select the latest version of the file. For more information, see
“Update Imported Requirements” on page 1-52.

Referenced requirements are locked for editing by default. Locked requirements are represented by

the locked referenced requirement icon () in the Requirements Editor. To unlock an individual
referenced requirement, navigate to it in the Requirements Editor, and, in the Details pane, under
Properties, click Unlock. Unlocked requirements are represented by the unlocked referenced
requirement icon () in the Requirements Editor. Unlock all referenced requirements by navigating
to the top Import node and, in the Details pane, under Requirement Interchange, clicking Unlock
all. You cannot delete referenced requirements or change their hierarchy within Simulink
Requirements, even after unlocking them. You cannot relock requirements after you unlock them,
except by updating the entire referenced requirement set. Updating the referenced requirements
overwrites changes made after the referenced requirements were unlocked.

You can register custom attributes for a requirement set that contains referenced requirements in
Simulink Requirements. To set the custom attribute value for a referenced requirement, you must
unlock that requirement. For more information on registering custom attributes and setting their
values for requirements, see “Customize Requirements with Custom Attributes” on page 1-48. When
you register custom attributes within Simulink Requirements and set referenced requirement custom
attribute values, those values are retained when you update the referenced requirements from the

 Import Requirements from Third-Party Applications

1-9

external source. However, if you modify custom attribute values that were imported from the external
source, the update operation will overwrite modifications made to unlocked referenced requirements.

However, some third-party applications also allow you to create custom attributes. If you have
attributes with the same name in the requirement set and in the external source document, when you
update the referenced requirements from the external source, the local values are overwritten with
the attribute values defined in the external source document.

When working with referenced requirements, you can navigate to the requirement in the external
source document by clicking Show in document in the Properties pane. If there is a change in the
source document's file name or location, right-click the top node of the requirement set and select
Update source document name or location.

Differences Between Importing and Direct Linking
Simulink Requirements also supports direct linking to requirements stored externally in Microsoft
Word, Microsoft Excel, IBM Rational DOORS, and IBM DOORS Next.

When you create direct links from requirements in third-party applications to items in MATLAB or
Simulink, the requirements are not covered by analysis tools provided by Simulink Requirements.
Additionally, depending on how the direct links to external requirements were created, you might not
have visible backlinks to navigate to the linked item in MATLAB or Simulink. For example, when you
link to requirements in Microsoft Word by creating a link to a bookmark or a heading, no navigation
object is added to the Microsoft Word document. (See “Link to Requirements in Microsoft Word
Documents” on page 6-2.) There is no indication when a direct link becomes unresolved unless you
run consistency checks.

When you import requirements to Simulink Requirements and then create links instead of creating
direct links, you gain access to Simulink Requirements analysis tools, such as implementation status,
verification status, and change tracking. Additionally, Simulink Requirements provides full link source
and destination traceability and navigation. There is full indication when a link becomes unresolved.

See Also
slreq.import

Related Examples
• “Link with Requirements in IBM DOORS Next” on page 7-4
• “Working with IBM Rational DOORS 9 Requirements” on page 7-50

More About
• “Import Requirements from Microsoft Office Documents” on page 1-11
• “Import Requirements from IBM DOORS Next” on page 1-27
• “Import Requirements from ReqIF Files” on page 1-16
• “Update Imported Requirements” on page 1-52
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73

1 Requirements Definition

1-10

Import Requirements from Microsoft Office Documents
You can author requirements in Microsoft Word and Microsoft Excel and import them into Simulink
Requirements. When you import the requirements, you can allow updates from the Microsoft Office
documents, or you can import them without allowing updates. To read more about these import
modes, see “Select an Import Mode” on page 1-7.

To import requirements from a Microsoft Office document:

1 Open the Requirements Editor. At the MATLAB command line, enter:

slreq.editor
2 Click Import.
3 Set the Document type to Microsoft Word Document or Microsoft Excel Spreadsheet.
4 Next to the Document Location field, click Browse and select the desired file.
5 Set the import options. To read more about import options for Microsoft Office documents, see

“Import Options for Microsoft Word Documents” on page 1-11 and “Import Options for
Microsoft Excel Spreadsheets” on page 1-13. To read more about importing requirement sets or
referenced requirements, see “Select an Import Mode” on page 1-7.

6 Click Import to import the requirements.

Import Options for Microsoft Word Documents
You can import requirements in plain and rich text formats from Microsoft Word documents. Use the
rich text format to import requirements that contain content such as graphics and tables.

When you import requirements from Microsoft Word documents, the section headers and numbers
populate the ID and Summary fields and the section body populates the Description field. To ignore
section numbers in the imported requirements, select Ignore outline numbers in section headers.
If you select Allow updates from external source, it is recommended to ignore outline numbers to
prevent unexpected behavior that can occur if the section numbers change when you make changes
to your Microsoft Word document and then update the imported requirements. For example, when
you insert a new section in the middle of your document, some of the outline numbers in the section
headers change to reflect the new section numbering. When you update the requirement set,
Simulink Requirements deletes the referenced requirements that correspond to sections whose
outline numbers changed and re-inserts them with the updated numbering. This can create some
unexpected and unnecessary change issues.

 Import Requirements from Microsoft Office Documents

1-11

The imported requirements hierarchy matches the Microsoft Word document headings hierarchy.

When you import requirements, it is recommended to select Use bookmarks to identify items and
serve as custom IDs because the bookmarks are persistently stored in the document and cannot be
duplicated.

You can import requirements selectively when you select Identify items by occurrences of search
pattern (REGEXP) and enter a regular expression search pattern. To read more about regular
expressions, see “Regular Expressions”.

Note If you do not have images in your requirements document, consider importing your
requirements as plain text to prevent some issues related to font, style, or whitespace differences.

1 Requirements Definition

1-12

Import Options for Microsoft Excel Spreadsheets
You can import requirements in plain and rich text formats from Microsoft Excel spreadsheets. The
plain text format imports only text and associates each column of your spreadsheet to a requirement
property. The rich text format imports graphics, layouts, and captures multicell ranges.

Note If your Excel spreadsheet contains cells that are grouped and the group is collapsed, any
requirements in cells that are not visible are not imported.

When you import requirements from Microsoft Excel files, you can identify requirements by
specifying rows and columns, or you use a regular expression search pattern.

Identify Requirements by Specifying Rows and Columns

To identify requirements by specifying rows and columns, in the Importing Requirements dialog,
under Requirement Identification, select Specify rows and columns.

 Import Requirements from Microsoft Office Documents

1-13

Importing requirements with this method allows you to map columns to requirements properties and
custom attributes when you click Configure columns. Under each column, you can select an item
from the list. You must select a column to map to either Summary or Description. If you select
<Custom Attribute>, a custom attribute is registered for the requirement set with the custom
attribute name specified by the column name. To read more about custom attributes for
requirements, see “Customize Requirements with Custom Attributes” on page 1-48.

Each column is imported as a separate specified property or custom attribute, with the exception of
the Description and Rationale properties, which can combine multiple adjacent columns. When you
select multiple columns for Description and Rationale, the value from each cell is concatenated into
one field.

If you cannot map one of the columns in the spreadsheet to a column that holds unique requirement
custom IDs, the import operation automatically generates unique custom IDs based on the rows in
the spreadsheet. These custom IDs might not be persistent. If you explicitly select a column that does
not have unique custom IDs, you cannot update the requirements document later.

You can exclude contents by ignoring columns and selecting only a range of rows to import. To ignore
a column, select <Ignore> from the drop-down menu at the top of that column. To import only a
range of rows, under Specify rows to import, enter the row number to start at and end at.

1 Requirements Definition

1-14

Note You cannot maintain the hierarchy from your Microsoft Excel file when, under Requirement
Identification, you select Specify rows and columns.

Identify Requirements by Regular Expression Search Pattern

To identify requirement by using a regular expression search pattern, in the Importing Requirements
dialog, under Requirement Identification, select Use search pattern (REGEXP). To read more
about regular expressions, see “Regular Expressions”.

The main advantage to using a regular expression search pattern is that you can retain the existing
hierarchy when you import requirements from an Excel document if the matched requirement IDs are
hierarchical. For example, the pattern R[\d\.]+ will match requirements with IDs R1, R1.1, R2,
and so on, and R1.1 will be recognized as a child of R1. Additionally, you can selectively import
requirements by importing only requirements that match the regular expression.

See Also
slreq.import

Related Examples
• “Import and Update Requirements from a Microsoft Word Document” on page 1-54

More About
• “Import Requirements from Third-Party Applications” on page 1-7

 Import Requirements from Microsoft Office Documents

1-15

Import Requirements from ReqIF Files
Many third-party requirements management applications can export and import requirements using
the ReqIF format. You can import requirements from a ReqIF file as references to a third-party source
called referenced requirements, which are represented as slreq.Reference objects, or as
requirements in new requirement sets, which are represented as slreq.Requirement objects. For
more information about choosing which import mode to use, see “Select an Import Mode” on page 1-
7.

Choosing an Import Mapping
ReqIF represents requirements as SpecObject objects and links as SpecRelation objects that
relate SpecObject objects. Each SpecObjectType object specifies the associated SpecObject
object and the SpecRelationType objects classify each SpecRelation object. The
SpecObjectType and SpecRelationType objects define attributes to store requirements and link
information. The SpecObject and SpecRelation objects contain values for these attributes.

This table shows the relationship between requirements and links in Simulink Requirements and their
ReqIF counterparts.

Item Representation in Simulink
Requirements

Representation in ReqIF

Requirement • slreq.Requirement object
• slreq.Reference object

SpecObject object

Requirement type • Type property
ofslreq.Requirement
object

• Type property of
slreq.Reference object

longName attribute of the
SpecObjectType object

Requirement attributes • slreq.Requirement
properties

• slreq.Reference
properties

• Custom attributes for
requirement sets on page 1-
48

• SpecObjectType objects
define attributes

• SpecObject objects define
attribute values

Link slreq.Link object SpecRelation object
Link type Type property of slreq.Link

object
longName attribute of the
SpecRelationType object

Link attributes slreq.Link properties and
custom attributes on page 2-65

• SpecRelationType objects
define attributes

• SpecRelation objects
define attribute values

For more information about ReqIF data organization, see the Exchange Document Content section in
Requirements Interchange Format (ReqIF) Version 1.2lo.

1 Requirements Definition

1-16

https://www.omg.org/spec/ReqIF/1.2/PDF

When you import requirements and links from a ReqIF file, you can choose the import mode that you
use based on how the import process maps the requirements from ReqIF to Simulink Requirements.
The import process maps the SpecObject objects to slreq.Requirement objects or
slreq.Reference objects, depending on the import mode, and SpecRelation objects to
slreq.Link objects. The imported requirement type, properties, and imported link type depend on
the import mapping that you choose.

Simulink Requirements provides built-in import mappings for some third-party applications that use
ReqIF:

• IBM Rational DOORS
• IBM DOORS Next
• Polarion™
• PREEvision
• Jama

When you import requirements from ReqIF files generated by other requirements management
applications, you can use a generic attribute mapping.

After you import requirements, you can edit the attribute mappings. See “Mapping ReqIF Attributes
in Simulink Requirements” on page 1-23.

Note If you experience problems navigating from requirements in Polarion to items in MATLAB or
Simulink due to changes to navigation URLs enforced by Polarion, you may need to apply a
configuration change. Open the polarion.properties file found in the
<polarion_installation>/polarion/configuration/ folder and modify these lines by
replacing localhost with the externally known name for your server:

• repo=http://localhost:80/repo/
• base.url=http://localhost:80/

Using the Built-In Mapping During Import

When you import a ReqIF file and use the built-in mapping for the third-party tool that generated the
file, Simulink Requirements imports the SpecObject objects as requirements with Type set to
Functional regardless of the associated SpecObjectType object. If the SpecObjectType objects
define additional attributes in the third-party tool, the attributes map to built-in requirements
properties, including Custom ID or ID, Summary, Description and revision information. The
remaining attributes map to new custom attributes. For more information about requirement custom
attributes, see “Customize Requirements with Custom Attributes” on page 1-48.

After you import the requirements, you can map the SpecObjectType objects to requirement types.
You can also edit the SpecObjectType object attribute mappings to requirement properties. See
“Mapping ReqIF Attributes in Simulink Requirements” on page 1-23.

When you import links using the built-in mapping, Simulink Requirements imports SpecRelation
objects as links and maps the SpecRelationType objects to link types in Simulink Requirements. If
a SpecRelationType in the ReqIF file is not defined in the import mapping, then SpecRelation
objects with that type import as links with Type set to Related to. For more information about link
types, see “Link Types” on page 2-33.

 Import Requirements from ReqIF Files

1-17

Using the Generic Mapping During Import

When you import a ReqIF file and use the generic mapping, Simulink Requirements imports the
SpecObject objects as requirements with Type set to Functional. The SpecObjectType object
attributes map to the CustomID or ID, Description, and Summary requirement properties, and to
new custom attributes. For more information about requirement custom attributes, see “Customize
Requirements with Custom Attributes” on page 1-48.

After you import the requirements, you can map the SpecObjectType objects to requirement types.
You can also edit the SpecObjectType object attribute mappings to match your desired requirement
properties. See “Mapping ReqIF Attributes in Simulink Requirements” on page 1-23.

When you import links by using the generic mapping, the SpecRelation objects import as links with
Type set to Related to. For more information about link types, see “Link Types” on page 2-33.

Importing Requirements
You can import requirements in the Requirements Editor. Requirements in ReqIF files belong to
specifications.

Tip To import images associated with requirements, use the third-party tool to export the
requirements as a .reqifz file and then import the file to Simulink Requirements.

1 Open the Requirements Editor with one of these approaches:

• At the MATLAB command line, enter:

slreq.editor
• In the MATLAB Apps tab, under Verification, Validation, and Test, click the Requirements

Editor app.
• In the Simulink Apps tab, under Model Verification, Validation, and Test, click the

Requirements Editor app.
2 In the Requirements Editor, click Import.
3 In the Importing Requirements dialog, set Document type, to ReqIF file (*.reqif or

*.reqifz).
4 Next to Document location, click Browse and select the ReqIF file.

1 Requirements Definition

1-18

5 Under Attribute mapping, in the Source tool drop-down, select the desired attribute mapping.
See “Choosing an Import Mapping” on page 1-16.

6 Under Destination(s), click Browse. Enter the file name, select the location to save the new
requirement set, and click Save.

7 Select whether to allow updates to the imported requirements. If you want to continue to manage
your imported requirements in the third-party tool, select Allow updates from external
source. If you want to migrate your requirements to Simulink Requirements, clear Allow
updates from external source. For more information about import options, see “Select an
Import Mode” on page 1-7.

8 Click Import to import the requirements.

The imported requirements maintain the requirement hierarchy.

 Import Requirements from ReqIF Files

1-19

Importing Requirements from a ReqIF File with Multiple Specifications

If you import a ReqIF file that contains multiple source specifications, you can select options in the
Source specifications section in the Importing Requirements dialog. You can:

• Select a single ReqIF source specification to import into a requirement set. In the Importing
Requirements dialog, under Source specifications, select Import a single specification and
choose a specification from the list.

• Combine ReqIF source specifications into one requirement set. In the Importing Requirements
dialog, under Source specifications, select Combine all specifications into one Requirement
Set.

If you select Allow updates from external source, then each specification is imported into a
separate Import node. You can update each Import node independently. Otherwise, each source
specification imports as a parent requirement and all requirements in the specification import as
its children.

• Import each ReqIF source specification into a separate requirement set. In the Importing
Requirements dialog, under Source specifications, select Import each specification into a
separate Requirement Set. Under Destination(s), next to Folder, click Browse and select a
destination folder location to save the requirement sets in.

1 Requirements Definition

1-20

The resulting requirement set file names are the same as the source specification name. If you
have an existing requirement set file with the same name as one of the source specifications in the
selected destination, it is overwritten.

Tip For large ReqIF files, consider importing each source specification into a separate requirement
set. This can help reduce file conflicts and help you track differences in individual requirement sets.

When deciding which import method to use for a ReqIF file that contains multiple source
specifications, consider if you are importing links and if you plan to export back to ReqIF. For more
information, see “Importing Links” on page 1-22 and “Considerations for ReqIF Files with Multiple
Specifications” on page 1-73.

 Import Requirements from ReqIF Files

1-21

Importing Links
When you import a ReqIF file to a requirement set, you can import links as well. To import links, in
the Importing Requirements dialog, under Source links, select Import links to preserve the links
from the ReqIF file. After the import, the Simulink Requirements link set files contain links between
requirements and other Model-Based Design items.

ReqIF files represent links as a SpecRelation object that relates two SpecObject objects. You can
only import links if the ReqIF file contains at least one SpecRelation object.

Importing Links from a ReqIF File with Multiple Source Specifications

When you import links from a ReqIF file with multiple source specifications, how you import the
source specifications affects the link import. If you:

1 Requirements Definition

1-22

• Import a single specification into a requirement set, Simulink Requirements only imports the
SpecRelation objects that link SpecObject objects within that specification. This import might
omit some links from the ReqIF file during import.

• Combine multiple ReqIF source specifications into one requirement set, the resolved links import
into one link set.

• Import each ReqIF source specification into a separate requirement set, the resolved links import
into separate link sets.

Importing Links from a ReqIF File Generated by Simulink Requirements

If you link a requirement in Simulink Requirements to an item that is not contained in the
requirement set, such as a Simulink block, and then export the requirement and associated links to a
ReqIF file, the export process inserts a SpecObject object into the ReqIF file that serves as a proxy
object for the linked item. If the linked item is one of the supported types, the proxy object has a
SpecObjectType longName value that describes the linked object type. For more information, see
“Exporting Links” on page 1-41.

When you re-import this ReqIF file, the software reconstructs the links that relate the proxy
SpecObject objects and requirements for proxy objects of the supported types. Links between the
proxy SpecObject objects that have the SpecObjectType longName attribute set to Requirement
cannot be reconstructed.

To reconstruct the links when you import a ReqIF file, in the Importing Requirements dialog:

1 Under Source specifications, select either Combine all Specifications into one
Requirement Set or Import each specification into a separate Requirement Set.

2 Under Source links, select Import Links.

The reconstructed links use the Simulink Requirements default link storage. For more information,
see “Requirements Link Storage” on page 5-4. The reconstructed links are appended to the link set
for the artifact that contains the link source. If the link set is not available, it is created with the same
base file name as the artifact and stored in the same folder as the artifact.

Mapping ReqIF Attributes in Simulink Requirements
ReqIF represents a requirement as a SpecObject object with a SpecObjectType object that
defines requirement attributes. When you import requirements from a ReqIF file, the attributes map
to requirement properties or custom attributes according to the import mapping that you choose. See
“Choosing an Import Mapping” on page 1-16.

After you import the requirements, you can edit the SpecObjectType object attribute mapping.
Select the Import node, which is denoted by , or the top-level requirement, depending on how you
imported the requirements. In the Details pane, under Attribute Mapping, you can edit the
attribute mappings. You can save the current mapping by clicking Save mapping. You can load a
saved mapping by clicking Load mapping. For more information, see “Edit the Attribute Mapping for
Imported Requirements” on page 1-84.

Map SpecObjectTypes to Requirement Types

After you import the requirements, you can map the SpecObjectType objects to requirement types
in Simulink Requirements.

 Import Requirements from ReqIF Files

1-23

1 In the Requirements Editor, select the Import node, which is denoted by , or the top-level
requirement, depending on if you imported the ReqIF requirements as referenced requirements
or requirements.

2 In the Details pane, under Attribute Mapping, click Map Object Types.

3 The Map Object Types dialog appears. Imported (external) type lists the SpecObjectType
objects and Internal (built-in or custom) type lists the available Simulink Requirements
requirement types. Map each SpecObjectType object by selecting a requirement type from the
list. For more information about requirement types, see “Requirement Types” on page 1-6. You
can also select <Add custom subtype> to add a custom requirement type that is a subtype of a
built-in type. For more information about custom requirement types, see “Define Custom
Requirement and Link Types” on page 2-40.

1 Requirements Definition

1-24

To add a custom requirement type:

1 In the Add Subtype for Requirements dialog, set Parent type name to extend to the built-in
requirement type that you want the custom requirement type to inherit from.

2 Next to New subtype name, enter the name for your new custom requirement type.
3 Next to Description, enter a description for your new custom requirement type.
4 Click OK to create the custom requirement type.

4 Click OK to map the SpecObjectType objects to requirement types. A dialog lists the number of
items updated.

See Also
slreq.import

 Import Requirements from ReqIF Files

1-25

More About
• “Export Requirements to ReqIF Files” on page 1-38
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73
• “Import Requirements from Third-Party Applications” on page 1-7
• “Create and Edit Attribute Mappings” on page 1-84
• “Update Imported Requirements” on page 1-52

1 Requirements Definition

1-26

Import Requirements from IBM DOORS Next
You can manage requirements in IBM DOORS Next and import either the entire requirements module
or requirements that match a query into Simulink Requirements. Simulink Requirements imports the
requirements as slreq.Reference objects, which are also called referenced requirements. After
you establish links with the imported referenced requirements, you can use the Requirements Editor
or Requirements Perspective to navigate from the imported referenced requirements to the original
requirement in DOORS Next. You can also measure how the requirements contribute to the
implementation status, verification status, and change tracking. For more information, see:

• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6
• “Track Changes to Requirement Links” on page 4-3

Configure IBM DOORS Next Session
To interface with IBM DOORS Next, you must configure MATLAB every session. At the MATLAB
command prompt, enter:

slreq.dngConfigure

In the DOORS Server dialog box, provide the DOORS Next server address, port number, and service
root as they appear in the web browser when accessing DOORS Next. If you do not see a port
number, enter the default value of 443. In the Server Login Name and Server Login Password dialog
boxes, enter your login credentials. In the DOORS Project dialog box, select the project and, if
applicable, the configuration context. If your configuration context is not listed in the Select
configuration stream or changeset list, load additional configurations by selecting <more>. For
more information about configurations, see “Specifying and Updating the IBM DOORS Next
Configuration” on page 7-32.

MATLAB then tests the connection in your browser. If the connection is successful, the MATLAB
Connector Test dialog box appears with a confirmation message. Click OK. If the dialog does not
appear or if an error appears after you enter slreq.dngConfigure, see the Tips section of
slreq.dngConfigure.

Import DOORS Next Requirements
You can import requirements by selecting a DOORS Next module or by creating a query. Because
Simulink Requirements imports requirements as slreq.Reference objects, you must import the
requirements into a new requirement set.

Note When you import requirements from a DOORS Next project that has configuration
management enabled, you must select the desired configuration context for your MATLAB session
before importing. For more information about enabling configuration management in DOORS Next,
see Configuration management in the RM application on the IBM website. For more information
about configuring your MATLAB session, see slreq.dngConfigure. The imported requirement set
is associated with this configuration for updating on page 1-30 and navigating on page 1-31
referenced requirements. For more information about configuration management, see “Specifying
and Updating the IBM DOORS Next Configuration” on page 7-32.

 Import Requirements from IBM DOORS Next

1-27

https://www.ibm.com/docs/en/elm/7.0.0?topic=overview-configuration-management-capabilities

Importing a Requirements Module

When you import requirements from a DOORS Next module, the Simulink Requirements imports the
entire module.

1 Open the Requirements Editor:

slreq.editor
2 In the Requirements Editor, click Import.

In the Importing Requirements dialog box, set Document type to IBM DOORS Next.

3 Set Document location to the project that you want to work with.
4 Under Get requirements from, select Full module hierarchy (takes time if large module).

Wait for the DNG Module list to populate.

1 Requirements Definition

1-28

5 Select the desired module from the DNG Module list.
6 Enter the name and file path for the Requirement Set. You can click Browse to browse for a

save location.
7 Click Import and wait for the process to import the data from the server into Simulink

Requirements. When the import completes, the Requirements Editor displays the hierarchy of
the imported items.

Importing Requirements by Using Queries

1 Open the Requirements Editor:

slreq.editor
2 In the Requirements Editor, click Import.

In the Importing Requirements dialog box, set Document type to IBM DOORS Next.

 Import Requirements from IBM DOORS Next

1-29

3 Set Document location to the project that you want to work with.
4 Under Get requirements from, select Filter by query (flat list of matched items).
5 Click Query Builder to open the OSLC Query Builder dialog box and specify your query. Use the

drop-down menus next to Object Type to choose the object type to import.

For example, you can import only stakeholder requirements by setting the drop-down menus to
Is A and Stakeholder Requirement.

6 To create a query with other query parameters, click Add Filter.

Note If an attribute is only defined for a given type of object, you must set Object Type to that
object type before you can filter by that attribute.

7 When you are done building your query, click Add to Query, then click OK. In the Importing
Requirements dialog, the Raw query string is populated.

8 Enter the name and file path for the Requirement Set. You can click Browse to browse for a
save location.

9 Click Import and wait for the process to import the data from the server into Simulink
Requirements.

Update Referenced Requirements
If you update the requirements in DOORS Next after importing them to Simulink Requirements, you
can update the requirement set to reflect the changes. In the Requirements Editor, select the top
import node and, in the Details pane, under Requirement Interchange, click Re-import Module
or Re-run Query, depending on the type of import you originally did.

1 Requirements Definition

1-30

Tip Re-importing a large module might take some time. If you know which requirement has changed
on the DOORS Next server, you can select that referenced requirement in the Requirements Editor
and in the Details pane, under Properties, click Update from Server to update that individual
requirement.

If your DOORS Next project has configuration management enabled and you selected a configuration
context when you configured your MATLAB session, then the DOORS Next requirement updates from
the configuration context.

Navigate from Referenced Requirements to Requirements in DOORS
Next
You can use the Requirements Editor to navigate from the referenced requirement to the original
requirement in DOORS Next. Select the referenced requirement in the Requirements Editor. In the
Details pane, under Properties, click Show in document.

You can also use the Requirements Perspective to navigate from the imported referenced
requirement to the original requirement. In a Simulink model, navigate to the Apps tab and select
Requirements Manager. Ensure that Layout > Requirements Browser is selected. In the
Requirements pane, in the View drop-down, select Requirements. Select a requirement. In the
Property Inspector, in the Details tab, under Properties, click Show in document.

If your DOORS Next project has configuration management enabled and you selected a configuration
context when you configured your MATLAB session, then the DOORS Next requirement opens in the
configuration context.

 Import Requirements from IBM DOORS Next

1-31

Linking with Referenced Requirements
After importing requirements from DOORS Next to Simulink Requirements, you can link these
referenced requirements the same way you link other slreq.Reference objects. For more
information, see “Requirement Links” on page 2-32.

You can also add backlinks in your DOORS Next project, which allow you to navigate from DOORS
Next requirements to items that are linked to the corresponding referenced requirement in Simulink
Requirements. For more information, see “Inserting Backlinks in DOORS Next” on page 7-27.

See Also
slreq.dngConfigure

Related Examples
• “Link with Requirements in IBM DOORS Next” on page 7-4

More About
• “Link and Trace Requirements with IBM DOORS Next” on page 7-26
• “Import Requirements from Third-Party Applications” on page 1-7
• “Import Requirements from ReqIF Files” on page 1-16

1 Requirements Definition

1-32

Import Requirements from IBM Rational DOORS
You can import either the entire requirements module or a subset of requirements from an IBM
Rational DOORS module. Simulink Requirements imports the requirements as slreq.Reference
objects, which are also called referenced requirements.

After you establish links with the imported referenced requirements, you can use the Requirements
Editor or Requirements Perspective to navigate from the imported referenced requirements to the
original requirement in IBM Rational DOORS.

Configure IBM Rational DOORS Session
To interface with IBM Rational DOORS, you must configure MATLAB after you install or update
MATLAB or IBM Rational DOORS. At the MATLAB command prompt, enter:

rmi setup doors

For more information, see “Configure Simulink Requirements for IBM Rational DOORS” on page 5-
2.

Note Depending on the permissions required by your machine, you might need to run MATLAB
and/or IBM Rational DOORS as an administrator.

Import an Entire Requirements Module
You can import requirements from IBM Rational DOORS from the Requirements Editor or the
MATLAB command line. To import requirements programmatically, see “Import Requirements from
IBM Rational DOORS by using the API” on page 1-87.

To import an IBM Rational DOORS requirements module in the Requirements Editor, first open the
Requirements Editor by using one of these approaches:

• At the MATLAB command line, enter:

slreq.editor
• In the MATLAB Apps tab, under Verification, Validation, and Test, click the Requirements

Editor app.
• In the Simulink Apps tab, under Model Verification, Validation, and Test, click the

Requirements Editor app.

Open the project in IBM Rational DOORS that contains the requirements modules that you want to
import. Then, in the Requirements Editor:

1 Click Import.
2 In the Importing Requirements dialog box, set Document Type to IBM Rational DOORS

Module.
3 Next to Document Location, click Use current to select the active requirements module, or

click Browse to open the Browse dialog in IBM Rational DOORS. In the Browse dialog, select the
module that you want to import, then click OK.

4 In the Importing Requirements dialog, under Content, select Text only (better performance)
to import requirements as text or Include graphics and layout to import images, graphics, and
text formatting.

 Import Requirements from IBM Rational DOORS

1-33

5 Under Row filter, the dialog shows the currently applied filter in your selected IBM Rational
DOORS requirements module. If you do not see the currently applied filter, click Refresh.
Simulink Requirements imports only the requirements that match the currently applied filter. For
more information, see “Import a Subset of Requirements from a Module” on page 1-35.

6 Under Attributes to import, click Map Attributes to select the attributes to import from your
requirements module. Simulink Requirements maps some default attributes automatically to
requirements properties. In the DOORS Module dialog box, you can map additional attributes to
remaining unmapped requirements properties or to custom attributes. You can omit an attribute
during import by selecting <Ignore>.

You can also edit the attribute mapping after you import. For more information, see “Create and
Edit Attribute Mappings” on page 1-84.

7 Under Destination(s), enter the name and file path for the requirement set. Click Browse to
select a save location.

8 Click Import. When the import completes, the Requirements Editor displays the requirements
hierarchy.

1 Requirements Definition

1-34

Simulink Requirements imports the requirements as referenced requirements in a new requirement
set. If you make changes to the requirements module in IBM Rational DOORS, you can update the
referenced requirements. For more information, see “Update Imported Requirements” on page 1-52.

Import a Subset of Requirements from a Module
You can import a subset of requirements from an IBM Rational DOORS requirements module by
applying a filter to the module. For more information about applying a filter to a requirements
module, see Defining filters on the IBM website.

When you import requirements that have an applied filter in the Requirements Editor, the Importing
Requirements dialog displays the filter. Only the requirements that match the filter import to
Simulink Requirements. For more information, see “Import an Entire Requirements Module” on page
1-33.

Update the Filtered Requirement Set

When you import the requirements, you can choose to store the filter by selecting Store current row
filter to apply automatically in future updates in the Importing Requirements dialog. You can use
this filter if you update the requirement set. If you stored the filter, but update the requirement set
with a different filter, the DOORS filter mismatch dialog box appears.

You can then:

• Update the requirement set with the filter that was stored during import by clicking Apply stored
filter. The import process updates the requirements in the requirement set to reflect any changes
made in your requirements module.

• Update the requirement set by using the currently applied filter in your requirements module by
clicking Update stored filter. This action replaces the currently stored filter with the new filter.
Simulink Requirements adds the requirements to or removes them from the requirement set to
reflect the currently applied filter in your requirements module and updates the existing
requirements to reflect the changes in DOORS.

If you choose not to store the filter during import and then update the requirement set, Simulink
Requirements adds to or removes requirements from the requirement set to reflect the currently
applied filter in your requirements module and updates existing requirements in the requirement set
to reflect the changes made in the requirements module.

Update the Requirement Set
After you import requirements from an IBM Rational DOORS requirements module, you can update
the requirement set. For more information, see “Update Imported Requirements” on page 1-52.

 Import Requirements from IBM Rational DOORS

1-35

https://www.ibm.com/docs/en/ermd/9.6.1?topic=modules-defining-filters

Navigate Between Referenced Requirements and Requirements in IBM
Rational DOORS
You can navigate from a referenced requirement to the original requirement in an IBM Rational
DOORS requirements module, or from the original requirement to a referenced requirement in
MATLAB.

Navigate from MATLAB to IBM Rational DOORS to MATLAB

To navigate from the Requirements Editor to the original requirement in, select the referenced
requirement in the Requirements Editor. In the Details pane, under Properties, click Show in
document.

You can also use the Requirements Perspective to navigate to the original requirement. In a Simulink
model, open the Apps tab and select Requirements Manager. Ensure that Layout >
Requirements Browser is selected. In the Requirements pane, in the View drop-down, select
Requirements, then select a requirement. In the Property Inspector, in the Details tab, under
Properties, click Show in document.

Navigate from IBM Rational DOORS to MATLAB

To navigate from a requirement in an IBM Rational DOORS requirements module to the
corresponding referenced requirement in Simulink Requirements, select the requirement, then click
MATLAB > Select item. The referenced requirement opens in the Requirements Editor.

See Also
slreq.import

Related Examples
• “Import Requirements from IBM Rational DOORS by using the API” on page 1-87
• “Working with IBM Rational DOORS 9 Requirements” on page 7-50

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Import Requirements from IBM DOORS Next” on page 1-27
• “Import Requirements from ReqIF Files” on page 1-16
• “Update Imported Requirements” on page 1-52
• “Create and Edit Attribute Mappings” on page 1-84

1 Requirements Definition

1-36

• “Manage Navigation Backlinks in External Requirements Documents” on page 2-50

 Import Requirements from IBM Rational DOORS

1-37

Export Requirements to ReqIF Files
Many third-party requirements management tools support data exchange using the Requirements
Interchange Format, also known as ReqIF. You can export requirements in Simulink Requirements to
a ReqIF file.

Choosing an Export Mapping
ReqIF represents requirements as SpecObject objects and links as SpecRelation objects between
SpecObject objects. Each SpecObject object specifies the associated SpecObjectType object and
the SpecRelationType objects classify each SpecRelation object. The SpecObjectType and
SpecRelationType objects define attributes to store requirements and link information. The
SpecObject and SpecRelation objects contain values for these attributes.

When you export requirements and links to a ReqIF file, the export process maps the Simulink
Requirements objects to SpecObject and SpecRelation objects. The exported value of the
SpecObjectType and SpecRelationType objects depends on the export mapping that you choose.

For more information about ReqIF data organization, see the Exchange Document Content section in
Requirements Interchange Format (ReqIF) Version 1.2.

Simulink Requirements provides built-in export mappings for some third-party applications that use
ReqIF:

• IBM Rational DOORS
• IBM DOORS Next
• Polarion
• PREEvision
• Jama

You can also use a generic mapping.

A ReqIF round-trip is when you import requirements from a ReqIF file, edit the requirements, and
export them back to a ReqIF file. When you import requirements during a ReqIF round-trip, avoid
unexpected behavior by using either:

• A generic mapping
• The same mapping for import and export

For more information about ReqIF round-trips, see “Round-Trip Importing and Exporting for ReqIF
Files” on page 1-73.

When you export requirements authored in Simulink Requirements, use a generic mapping.

Reusing the Import Mapping During Export

If you import requirements from a ReqIF file, you can change the requirement types manually or by
mapping the SpecObjectType object values to requirement types in Simulink Requirements. For
more information, see “Map SpecObjectTypes to Requirement Types” on page 1-23. If you export
requirements during a round-trip with the same attribute mapping used for the import, the exported
SpecObjectType object values revert to the original imported values regardless of changes that you
made to the requirement type after importing.

1 Requirements Definition

1-38

https://www.omg.org/spec/ReqIF/1.2/PDF

Similarly, if you import links from a ReqIF file, you can change the link types manually. If you export
links during a round-trip and use the same attribute mapping used for the import, the exported
SpecRelationType object values revert to the original imported values.

Using the Generic Mapping During Export

When you export requirements content to a ReqIF file by using a generic attribute mapping, the
requirements and referenced requirements that use the built-in requirement types on page 1-6 and
all the justifications export as SpecObject objects with the associated SpecObjectType object
longName attribute set to Requirement. However, you can specify what longName is set to by
setting the Simulink Requirements requirement type to a custom requirement type. For more
information about creating custom requirement types, see “Define Custom Requirement and Link
Types” on page 2-40.

When you export links to a ReqIF file by using the generic mapping, Simulink Requirements exports
the links as SpecRelation objects with the associated SpecRelationType object longName
attribute set to the same value as the link type in Simulink Requirements. For more information about
link types, see “Link Types” on page 2-33.

Exporting Requirement Attributes

The SpecObjectType object defines requirement attributes. Each SpecObject object specifies the
associated SpecObjectType object. The SpecObject object also contains the requirement attribute
values. For more information, see the table in “Choosing an Import Mapping” on page 1-16.

If your ReqIF file contains SpecObjectType objects that have requirement attributes and you export
the requirements to a ReqIF during a round-trip, the exported SpecObject object attribute values

 Export Requirements to ReqIF Files

1-39

revert to the original imported values regardless of the export mapping chosen. The values revert
even if you mapped the attributes to requirement properties after the import. For more information
about editing attribute mappings for requirements after import, see “Mapping ReqIF Attributes in
Simulink Requirements” on page 1-23

When you author requirements in Simulink Requirements and export them to a ReqIF file, the export
process only exports the requirement ID, summary, and custom attributes.

Exporting Requirements

You can export a single requirement set, a single Import node, which is denoted by , or a single
parent requirement and all of its children to a ReqIF file.

If you export a single parent requirement, the export process also exports the requirements above the
parent requirement up to the top-level requirement. You can only export a single parent requirement
if it was authored in Simulink Requirements.

To export requirements content:

1 In the Requirements Editor, select the requirement set, Import node, or requirement that you
want to export.

2 Click Export > ReqIF.
3 The Export Requirement Set to ReqIF dialog appears. In the dialog, set Export mapping for

attributes and types to the attribute mapping that aligns with your third-party tool, or set it to
Generic. For more information, see “Choosing an Export Mapping” on page 1-38.

4 Under Additional contents to export, select Export links to include links in the exported
ReqIF, or clear the selection to omit links.

5 Output file shows the default file path and name for the exported ReqIF file. To edit the file path
or name, click Browse and save the file path and name by clicking Save.

6 Export the ReqIF file by clicking Export.

1 Requirements Definition

1-40

Exporting Links
If your requirements have links, you can export the links along with the requirements to a ReqIF file.
For more information, see “Exporting Requirements” on page 1-40.

ReqIF represents links as SpecRelation objects between SpecObject objects. When you export
links to a ReqIF file, the exported SpecRelationType depends on the export mapping that you use.
For more information, see “Choosing an Export Mapping” on page 1-38.

If you link a requirement in Simulink Requirements to an item that is not contained in the
requirement set, such as a Simulink block or a requirement in a different requirement set, and then
export the requirement and associated links to a ReqIF file, the export process inserts a SpecObject
object into the ReqIF file that serves as a proxy object for the linked item.

If the linked item is one of the supported types, then the SpecObjectType object associated with the
proxy SpecObject has a SpecObjectType longName value that describes the linked object type:

Linked Item SpecObjectType longName Value
• Simulink model element
• Stateflow® model element
• System Composer™ model element

Simulink Object

 Export Requirements to ReqIF Files

1-41

Linked Item SpecObjectType longName Value
Simulink Test™:

• Test file
• Test suite
• Test case
• Iteration
• Assessment

Simulink Test Object

MATLAB code MATLAB Code Range
Web browser URL External Resource
Simulink data dictionary entry Simulink DDEntry
• Requirement
• Referenced requirement

Simulink Requirements object

For all other items, the proxy SpecObject has an associated SpecObjectType object with
longName set to Requirement.

Note The exported proxy SpecObject objects include persistent IDs that can be used by the third-
party tool to avoid duplicating the proxy objects. Duplication may occur if different ReqIF files
contain links from the same MATLAB or Simulink object.

If you re-import a ReqIF file generated by the Simulink Requirements export process, the software
reconstructs the links that relate the proxy SpecObject objects and requirements for proxy objects
of the supported types. Links that relate the requirements and proxy objects that have
SpecObjectType longName value set to Requirement cannot be reconstructed. For more
information, see “Importing Links from a ReqIF File Generated by Simulink Requirements” on page
1-23.

See Also

More About
• “Import Requirements from ReqIF Files” on page 1-16
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73
• “Import Requirements from Third-Party Applications” on page 1-7

1 Requirements Definition

1-42

Define Requirements Hierarchy
Using Simulink Requirements, you can derive lower-level requirements from higher-level
requirements to establish and manage parent-child relationships.

The requirement set is the top level of hierarchy for all requirements. All requirements in Simulink
Requirements are contained in requirement sets. Every top-level parent requirement in a
requirement set is the first-level hierarchy for that set. Referenced requirements (slreq.Reference
objects) and requirements (slreq.Requirement objects) cannot share a parent requirement.

Within a requirement set, you can change the level of individual requirements by using Promote

Requirement or Demote Requirement in the Requirements Editor, or the icons on the
Requirements Browser toolbar. When you promote or demote a requirement with children, the
parent-child hierarchical relationship is preserved. You can also move requirements up and down the
same level of hierarchy by right-clicking the requirement and selecting Move up or Move down.

The Implementation and Verification Status metrics for a requirement set are cumulatively
aggregated over all the requirements in the set. Each parent requirement in a requirement set
derives its metrics from all its child requirements. For more information on the Implementation and
Verification Status metrics, see “Review Requirements Implementation Status” on page 3-2 and
“Review Requirements Verification Status” on page 3-6.

Requirement Sets
You can create requirement sets from the Requirements Editor and from the Requirements
Browser. Requirement set files (.slreqx) are not inherently associated with your Simulink models.

Requirement sets have built-in properties such as the Filepath and the Revision number associated
with them as metadata. Except for the Description, properties of the requirement set are read-only
and are updated as you work with the requirement set.

Custom Attributes of Requirement Sets
Define custom attributes for your requirement sets that apply to the requirements they contain.
Custom attributes extend the set of properties associated with your requirements. Define custom
attributes for a requirement set from the Custom Attribute Registries pane of the Requirements
Editor.

To define custom attributes:

1 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the
Requirements tab, click Requirements Editor.

2 Select the requirement set and click Add in the Custom Attribute Registries pane.
3 The Custom Attribute Registration dialog box opens. Select the type of custom attribute you want

to set for your requirements by using the Type drop-down list. You can specify custom attributes
as text fields, check boxes, and combo boxes and date time entries.

To view the custom attributes for your requirements in the spreadsheet, right-click the requirement
set and click Select Attributes.

When you define a custom attribute as a combobox, the first entry is preset to Unset and it cannot be
renamed or deleted. Custom attributes that are imported as referenced requirements from an

 Define Requirements Hierarchy

1-43

external document become read-only custom attributes after they are imported. The custom
attributes of a requirement set are associated with every individual requirement in the set and
removing the custom attributes for a requirement set removes it from all the requirements in the set.

See “Customize Requirements with Custom Attributes” on page 1-48 for more information about
creating custom attributes for requirements.

See Also

More About
• “Customize Requirements with Custom Attributes” on page 1-48
• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6

1 Requirements Definition

1-44

Create Requirement Set File by Using the Simulink®
Requirements™ API

This example shows how to use the Simulink® Requirements™ API to create a requirement set with a
custom hierarchy and custom requirement types. You create a requirement set as an .slreqx file.

Requirement Set Hierarchy

The requirement set that you create in this example contains two top-level parent requirements and
parent justifications for implementation and verification. The requirement set follows this hierarchical
structure.

Create Requirement Set

Navigate to the folder where you want to create the requirement set. Create a requirement set
my_New_Req_Set with handle myReqSet by using the slreq.new() function.

myReqSet = slreq.new('my_New_Req_Set');

Add System Requirements to the Requirement Set

Add a top-level Container requirement for System Requirements to the requirement set

myParentReq1 = add(myReqSet,'Id','R1', ...
 'Summary','System Requirements', ...
 'Type', 'Container');

Create child requirements for R1.

 Create Requirement Set File by Using the Simulink® Requirements™ API

1-45

childReqR11 = add(myParentReq1,'Id','R1.1');
childReqR12 = add(myParentReq1,'Id','R1.2');

Create child requirements for R1.1.

childReqR111 = add(childReqR11,'Id','R1.1.1');
childReqR112 = add(childReqR11,'Id','R1.1.2');
childReqR113 = add(childReqR11,'Id','R1.1.3');

Create a child requirement for R1.1.3.

childReqR1131 = add(childReqR113,'Id','R1.1.3.1');

Add Safety Requirements to the Requirement Set

Add a top-level Safety requirement to the requirement set. Safety requirements are informational and
do not contribute to the Implementation and Verification status summaries. In this example, you
define a custom requirement type that extends the Informational requirement type by using the
sl_customization.m file.

Refresh customizations to add the Safety requirement type to the list of requirement types.

sl_refresh_customizations;

Create the parent safety requirement.

myParentReq2 = add(myReqSet,'Id','R2', ...
 'Summary','Safety Requirements', ...
 'Type','Safety');

Create child requirements for R2.

childReqR21 = add(myParentReq2,'Id','R2.1');
childReqR22 = add(myParentReq2,'Id','R2.2');

Create child requirements for R2.2.

childReqR221 = add(childReqR22,'Id','R2.2.1');
childReqR222 = add(childReqR22,'Id','R2.2.2');
childReqR223 = add(childReqR22,'Id','R2.2.3');

Add Justifications to the Requirement Set

Create the parent justification.

myParentJustification = addJustification(myReqSet,'Id','J', ...
 'Summary','Requirement Justifications');

Add child justifications to the parent justification J to justify requirements for Implementation

childJust1 = add(myParentJustification,'Id','J1', ...
 'Summary','Implementation Justifications');

Add child justifications to the parent justification J to justify requirements for Verification

childJust2 = add(myParentJustification,'Id','J2', ...
 'Summary','Verification Justifications');

1 Requirements Definition

1-46

Save the Requirement Set

save(myReqSet);

Cleanup

Close any open requirement sets.

slreq.clear;

 Create Requirement Set File by Using the Simulink® Requirements™ API

1-47

Customize Requirements with Custom Attributes
In this section...
“Define Custom Attributes for Requirement Sets” on page 1-48
“Set Custom Attribute Values for Requirements” on page 1-49
“Edit Custom Attributes” on page 1-50
“Custom Attributes for Referenced Requirements” on page 1-50
“Import Custom Attributes” on page 1-50
“Limitations” on page 1-51

When you create a requirement set using Simulink Requirements, you can create custom attributes
that apply to the requirements contained in the requirement set. Custom attributes extend the set of
properties associated with your requirements.

Define Custom Attributes for Requirement Sets
To define a custom attribute for a requirement set:

1 Open the Requirements Editor. At the MATLAB command prompt, enter:

slreq.editor
2 Click Show Requirements.
3 Open an existing requirement set, or create a new one.
4 Select the requirement set.
5 In the Details pane, under Custom Attribute Registries, click Add to add a custom attribute to

the requirement set.
6 The Custom Attribute Registration dialog box appears. Enter the name of your custom

attribute in the Name field. Select the type from the Type drop-down menu. Enter a description
of the custom attribute in the Description field.

1 Requirements Definition

1-48

Custom Attribute Types

There are four custom attribute types:

• Edit: Text box that accepts a character array. There is no default value.
• Checkbox: Single check box that can be either checked or unchecked. The default value is

unchecked.
• Combobox: Drop-down menu with user-defined options. Unset is always the first option in the

drop-down menu and the default attribute value.
• DateTime: Text box that only accepts a datetime array. There is no default value. See datetime

for more information on datetime arrays.

Set Custom Attribute Values for Requirements
After you define custom attributes for a requirement set, you can set the custom attribute value for
each requirement. Select the requirement in the Requirements Editor. In the Details pane, under
Custom Attributes, enter the desired value in the field.

If you do not define a value for Checkbox or Combobox type custom attributes for a requirement, the
value will be set to the default. For Checkbox custom attributes, the default value is defined in the
Custom Attribute Registries pane for the requirement set. For Combobox custom attributes, the
default value is Unset.

 Customize Requirements with Custom Attributes

1-49

Edit Custom Attributes
After you define a custom attribute for a requirement set, you can make limited changes to the
custom attribute. To make changes, select the requirement set in the Requirements Editor. In the
Details pane, under Custom Attribute Registries, select the custom attribute you want to edit and
click Edit.

For custom attributes of any type, you can edit the name and description. For Combobox custom
attributes, you can also edit the drop-down menu options. You can edit the value of each option in the
drop-down menu (excluding Unset), or add and remove options. If you edit the value of an option or
remove an option, then requirements that had been set to that option will be reset to the default
value, Unset.

After you set the custom attribute value for a requirement, you can change the value by selecting the
requirement in the Requirements Editor and setting the updated value in the Custom Attributes
pane.

Custom Attributes for Referenced Requirements
When importing requirements from an external file into Simulink Requirements, if you select Allow
updates from external source, the requirements are imported as referenced requirements
(slreq.Reference objects). For more information, see “Select an Import Mode” on page 1-7.

Referenced requirements are read-only by default. Although you can add custom attributes to a
requirement set that includes referenced requirements, you must unlock the requirement to add a
custom attribute value. Select the referenced requirement and, in the Details pane, under
Properties, click Unlock. Alternatively, you can unlock the referenced requirements by selecting the
top import node and, in the Details pane, under Requirement Interchange, clicking Unlock all.

If you click Update in the Requirement Interchange pane, changes to your requirement set such
as new custom attributes or new custom attribute values will be lost. Save or export your
requirement set files before using Update. You can use Export in the Requirement Interchange
pane to export a ReqIF file with new custom attributes.

Import Custom Attributes
When importing requirements from an external source, you can also import custom attributes that
exist in the external source.

Import Custom Attributes from ReqIF

When importing requirements from a ReqIF file, you can map information to built-in properties and
custom attributes. For more information, see “Mapping ReqIF Attributes in Simulink Requirements”
on page 1-23.

Import Custom Attributes with Direct Import from IBM DOORS Next

When importing requirements using direct import from IBM DOORS Next®, custom attributes that
are defined in DOORS Next are automatically imported to Simulink Requirements. For information
about importing requirements from IBM DOORS Next using direct import, see “Link and Trace
Requirements with IBM DOORS Next” on page 7-26.

1 Requirements Definition

1-50

Import Custom Attributes from Microsoft Excel

When importing requirements from a Microsoft Excel file, you can map predefined headers or a row
of cells to built-in properties and custom attributes. See “Import Options for Microsoft Excel
Spreadsheets” on page 1-13.

Limitations
You can only set the custom attribute value for one requirement at a time.

If you copy a requirement and paste it within the same requirement set, the copied requirement
retains the same custom attribute values as the original. If the requirement is pasted into a different
requirement set, the copied requirement does not retain the custom attribute values.

See Also

Related Examples
• “Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API” on

page 1-79

More About
• “Customize Links with Custom Attributes” on page 2-43

 Customize Requirements with Custom Attributes

1-51

Update Imported Requirements
You can import referenced requirements from external requirements source documents, then update
them when changes are made to the source document. To import referenced requirements, open the
Requirements Editor, click Import, choose the source document and check the option to Allow
updates from external source. When you import requirements as referenced requirements from
external requirement documents, they retain a reference to the source document. Check if you have
an updated version of the source document by refreshing an import node. The top import node icon
changes to when an updated source document is available, indicating that the timestamp of the
source document is more recent than the last imported or updated timestamp.

Select the updated version of the source document during the Update operation. Alternatively, you
can update the file name and location of the source requirements document by right-clicking the top
node of the requirement set and selecting Update source document name or location.

Update a Requirement Set

To update your requirements in the requirement set, select the Import node in the Requirements
Editor. In the Details pane, under Requirements Interchange click Update.

Updating requirements:

• Matches the previously imported requirements to the updated source requirements and updates
the requirements in the new version of the document. This includes overwriting any local changes
you made to unlocked requirements.

• Generates comments about the differences between the document versions. You can view
comments when you select the top Import node in the requirement set in the Details pane under
Comments.

• Updates the modifiedOn value for the updated requirements and the updatedOn value for the
top Import node of the requirement set.

• Marks the requirement set as dirty, even if the requirements data did not change because its
updatedOn value changed.

• Preserves links to updated requirements.
• Preserves requirement SIDs.
• Preserves comments on requirements.
• Preserves local custom attributes you create within Simulink Requirements. See “Customize

Requirements with Custom Attributes” on page 1-48 for more information about creating custom
attributes for requirements.

Updating requirements does not change the links to updated requirements, the requirement SIDs,
the comments on requirements, or local custom attributes you create. If attributes in the requirement
set and the external source document use the same name, the updated requirements use the attribute
values defined in the external source document.

Update Requirements with Change Tracking Enabled
If you have change tracking enabled, and there are changes to a requirement with links, updating
requirements might trigger change issues that you might have to resolve:

1 Requirements Definition

1-52

• Match: No changes were detected between document versions. When you import different
versions of the same document, the Update operation might detect only whitespace differences,
such as carriage returns, linefeeds, and nonbreaking spaces. In this scenario, the Update
operation does not update the rich text fields such as the Description and the Rationale.

• Insertion: A new requirement was inserted in the requirement set.
• Deletion: A previously imported requirement was deleted from the requirement set.
• Update: The built-in or custom attribute values of a previously updated requirement were

changed.
• Move: A requirement was moved in the requirement hierarchy.
• Reorder: A requirement was reordered with respect to its sibling requirements.

Before importing requirements into Simulink Requirements, make sure that your requirements in the
requirements document have persistent and unique custom IDs that do not change across document
versions. The Update operation otherwise matches unrelated requirements and displays more
differences between document versions than actually exist.

Considerations for Microsoft Word Documents
Follow these guidelines when importing requirements from Microsoft Word documents:

• Use bookmarks for requirement custom IDs. You can then add content to the document while
maintaining requirement references. If you use section headings as requirement custom IDs,
changing the document can result in unresolved links when updating requirements.

• If you import requirements into a requirement set on one computer and update your requirements
on a different computer with a different set of fonts or styles installed, additional changes to the
requirement descriptions may be tracked. These changes occur because the font or style is
embedded in the HTML descriptions of the requirements.

• Before you execute update requirements, convert documents that you created in an older version
of Microsoft Word to the current version. This conversion prevents Microsoft Word from inserting
spurious whitespaces in your requirements document.

• In Microsoft Word, resolve issues related to the Trust Center or pending updates if you encounter
any errors during the Import or Update operations. These issues might cause Microsoft Word to
block incoming connections from MATLAB .

See Also

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Import Requirements from Microsoft Office Documents” on page 1-11
• “Import Requirements from ReqIF Files” on page 1-16

 Update Imported Requirements

1-53

Import and Update Requirements from a Microsoft Word
Document

This example shows you how to import and update requirements from Microsoft® Word requirement
documents. The model demonstrates a simple two-button switch that passes through outputs only
when one switch is pressed at a time.

This functionality is available only on Microsoft Windows® platforms.

This example uses a Microsoft Word document,
Reject_Double_Button_Press_Model_Requirements.docx. This document contains a set of
functional requirements for the rejectDoublePress model. Open the document from matlab/
examples/slrequirements. The requirements in the document appear in outline format with custom
bookmarks for navigation. To get the best results while importing and updating requirements, set up
your Microsoft Word documents with document outlines and custom bookmarks.

Open the model.

open_system('rejectDoublePress');

Import Requirements

1 In the Apps tab, click Requirements Manager. In the Requirements tab, click Requirements
Editor.

2 In the Requirements Editor, click Import.
3 Select Microsoft Word document from the Document type menu. Click Browse and select

Reject_Double_Button_Press_Model_Requirements.docx as the Document location.
4 Under Content select Plain text. Under Requirement Identification, select Use bookmarks

to identify items and serve as custom IDs and Ignore outline numbers in section
headers. Leave Allow updates from external source checked. For more information on import
options, see “Import Options for Microsoft Word Documents” on page 1-11.

The requirements from the Microsoft Word document are imported into the destination requirement
set under a top-level node, Import1.

1 Requirements Definition

1-54

Update Referenced Requirements

Requirements that you import as referenced requirements retain their references to the source
requirements document. To change your imported requirements, you can make the changes in the
source document and update your requirement set from within Simulink® Requirements™.

1 In the Reject_Double_Button_Press_Model_Requirements.docx document, add a new
requirement: 2.1.5 The Red and Green Button outputs shall be 0 if no buttons
are pressed.

2 In Microsoft Word, click Insert > Bookmark. Create a bookmark called
Red_and_Green_Button_Output_2_1_5 for the new requirement and save the Microsoft Word
document.

3 In the Requirements Editor, select the top-level node (Import1) of the destination requirement
set. In the Details pane under Requirement Interchange, click Update to update the
referenced requirements.

4 Select Import1 and view the changes in the Comments side bar. The Revision number and the
UpdatedOn values are updated for the requirement set.

For more information on updating requirements, see “Update Imported Requirements” on page 1-52.

Unlock Referenced Requirements

You can also edit a referenced requirement by unlocking it. In the Requirements Editor, select the
referenced requirement that you want to edit. In the Details pane, under Properties click Unlock.
You can unlock all referenced requirements in the requirement set by selecting the import node and
in the Details pane, under Requirement Interchange click Unlock All.

If you want to revert changes that you made to a requirement after unlocking it, you can update your
referenced requirements. Select the top-level node (Import1) of the destination requirement set. In
the Details pane under Requirement Interchange, click Update to update the referenced
requirements.

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.ReqSet

More About
• “Import Requirements from Microsoft Office Documents” on page 1-11
• “Link to Requirements in Microsoft Word Documents” on page 6-2
• “Import Requirements from Third-Party Applications” on page 1-7
• “Define Requirements Hierarchy” on page 1-43

 Import and Update Requirements from a Microsoft Word Document

1-55

Export Requirement Sets and Link Sets to Previous Versions of
Simulink Requirements

You can export requirement sets and link sets to files that are compatible with previous versions of
Simulink Requirements and MATLAB. You can export requirement sets and link sets to R2017b and
later.

Export Requirement Sets
You can export requirement sets from the Requirements Editor. Before you export a requirement set,
ensure that it is not open in the Requirements Perspective in a Simulink model.

To open the Requirements Editor, at the MATLAB command prompt, enter:

slreq.editor

In the Requirements Editor, select Open to open a requirement set. Select Show Requirements to
view the requirement set. Click the requirement set, then select Save > Export to Previous. In the
dialog, enter your desired name for the requirement set. Select the MATLAB version that you want to
export to from the Save as type list.

If you export a requirement set that has outgoing links to a previous version, Simulink Requirements
also exports a link set file that is compatible with the selected version.

Export Link Sets
You can export link sets to previous versions. The method that you use depends on the associated
artifact. If a link set is associated with a requirement set, exporting the requirement set also exports
the link set. For more information, see “Export Requirement Sets” on page 1-56.

If a link set is associated with a Simulink model, exporting the model also exports the link set. For
more information, see “Export Model to Previous Simulink Version”.

You can also directly export the link set to a previous version by using exportToVersion.

See Also
exportToVersion

1 Requirements Definition

1-56

Use Command-line API to Document Simulink Model in
Requirements Editor

This example uses Simulink® and Simulink Requirements® APIs to automatically capture and link
Simulink model structure, for the purpose of documenting the design in Simulink Requirements
Editor. Automation will also help to repair or migrate requirements traceability data after replacing
or modifying linked artifacts. The use of the following command-line APIs is demonstrated:

• slreq.new for creating a new Requirement Set
• slreq.ReqSet for adding entries to a Requirement Set
• add for adding child requirements
• slreq.Requirement for filling-in the Description field
• slreq.createLink for creating link from SRC to DEST
• slreq.find for locating Simulink Requirements objects
• setDestination for re-connecting the destination end of an existing link
• setSource for moving an existing link to the new source object
• isResolvedSource for identifying links whose source object cannot be found
• slreq.show used to view either the source or the destination end of a given slreq.Link

In a few places we also use the legacy rmi APIs that are inherited from Requirements Management
Interface (RMI) part of the retired SLVnV Product.

USE CASE 1: Link with Simulink Model Surrogate in Simulink Requirements

You want to use the Simulink Requirements product to create a detailed description of your Simulink
design, and you want to organize your Requirements collection in a hierarchy that matches your
Simulink models. You also want an easy way to navigate between the items of this Requirements
collection and the corresponding elements in your design.

For the purpose of this demonstration, consider the slvnvdemo_powerwindow_vs.slx specification
model designed for verifying the functional properties of
slvnvdemo_powerwindowController.slx.

open_system('slvnvdemo_powerwindow_vs');
open_system('slvnvdemo_powerwindowController');

We use the legacy VNV/RMI product API, rmi('getObjectsInModel',MODEL), to get a
hierarchical list of objects in MODEL, then use Simulink Requirements slreq.* APIs on page 1-0
to automatically generate the surrogate (representation) for each of our Simulink models.

We can then provide related design requirements information in the Description or Rational fields of
auto-generated proxy items.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-57

Below is the script that builds one Requirement Set with two model surrogates. The bottom three
commands provide an example of how to programmatically fill-in the Description field for a proxy
item, but most probably you will do this interactively in the Editor.

models = {'slvnvdemo_powerwindow_vs', 'slvnvdemo_powerwindowController'};
workDir = tempname;
disp(['Using ' workDir ' to store generated files.']);

Using C:\Users\ahoward\AppData\Local\Temp\tp048cdc5c_b22d_44f6_bb6c_85d54e962505 to store generated files.

mkdir(workDir);
addpath(workDir);
for modelIdx = 1:length(models)
 modelName = models{modelIdx};
 reqSetFile = fullfile(workDir, [modelName '.slreqx']);
 slProxySet = slreq.new(reqSetFile); % create separate ReqSet file with matching name
 open_system(modelName); % will create a proxy item for each object in this Simulink model
 modelNode = slProxySet.add('Id', modelName, 'Summary', [modelName ' Description']);
 [objHs, parentIdx, isSf, SIDs] = rmi('getobjectsInModel', modelName);
 for objIdx = 1:length(objHs)
 if parentIdx(objIdx) < 0 % top-level item is the model itself
 indexedReqs(objIdx) = modelNode; %#ok<SAGROW>
 else
 parentReq = indexedReqs(parentIdx(objIdx));

1 Requirements Definition

1-58

 if isSf(objIdx)
 sfObj = Simulink.ID.getHandle([modelName SIDs{objIdx}]);
 if isa(sfObj, 'Stateflow.State')
 name = sf('get', objHs(objIdx), '.name');
 elseif isa(sfObj, 'Stateflow.Transition')
 name = sf('get', objHs(objIdx), '.labelString');
 else
 warning('SF object of type %s skipped.', class(sfObj));
 continue;
 end
 type = strrep(class(sfObj), 'Stateflow.', '');
 else
 name = get_param(objHs(objIdx), 'Name');
 type = get_param(objHs(objIdx), 'BlockType');
 end
 indexedReqs(objIdx) = parentReq.add(...
 'Id', SIDs{objIdx}, 'Summary', [name ' (' type ')']); %#ok<SAGROW>
 end
 end
 slProxySet.save(); % save the autogenerated Requirement Set
end
slreq.editor(); % open editor to view the constructed Requirement Set
slProxySet = slreq.find('type', 'ReqSet', 'Name', 'slvnvdemo_powerwindow_vs');
roItem = slProxySet.find('type', 'Requirement', 'Summary', 'upD (Inport)'); % will...
% provide Description text for this item
roItem.Description = ['Driver''s UP button should close the window all the way if...' ...
 ' released within 0.5 seconds'];

Create Traceability Between Model Objects and Proxy Items

Now we can browse the structure of each model in the Requirement Editor, and we can edit the
Description fields to provide additional details about each design element. What's missing is an easy
way to navigate between the objects in Simulink diagrams and the proxy/surrogate items in Simulink
Requirements. The script below demonstrates the use of slreq.createLink API to automatically
add navigation links. We can choose any desired level of granularity. For the purpose of this example,
we will limit linking to SubSystem blocks.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-59

We can also enable highlighting to visualize which Simulink objects received navigation links.

1 Requirements Definition

1-60

Navigate the link from Simulink block to review the corresponding proxy item in Simulink
Requirements Editor. Note the hyperlink to the associated block in the Details pane under Links at
the bottom-right.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-61

for modelIdx = 1:length(models)
 modelName = models{modelIdx};
 counter = 0;
 slProxySet = slreq.find('type', 'ReqSet', 'Name', modelName);
 proxyItems = slProxySet.find('type', 'Requirement');
 for reqIdx = 1:numel(proxyItems)
 roItem = proxyItems(reqIdx);
 if contains(roItem.Summary, '(SubSystem)') % || contains(roItem.Summary, '(State)')
 sid = [modelName roItem.Id];
 disp([' linking ' sid ' ..']);
 srcObj = Simulink.ID.getHandle(sid);
 link = slreq.createLink(srcObj, roItem);
 link.Description = 'slreq proxy item';
 counter = counter + 1;
 end
 end
 disp(['Created ' num2str(counter) ' links for ' modelName]);
 rmi('highlightModel', modelName);
end

 linking slvnvdemo_powerwindow_vs:394 ..
 linking slvnvdemo_powerwindow_vs:394:224 ..
 linking slvnvdemo_powerwindow_vs:394:272 ..
 linking slvnvdemo_powerwindow_vs:394:271 ..

1 Requirements Definition

1-62

 linking slvnvdemo_powerwindow_vs:394:360 ..
 linking slvnvdemo_powerwindow_vs:397 ..
 linking slvnvdemo_powerwindow_vs:397:107 ..
 linking slvnvdemo_powerwindow_vs:397:300 ..
 linking slvnvdemo_powerwindow_vs:397:108 ..
 linking slvnvdemo_powerwindow_vs:397:285 ..
 linking slvnvdemo_powerwindow_vs:397:307 ..
 linking slvnvdemo_powerwindow_vs:399 ..
 linking slvnvdemo_powerwindow_vs:399:650 ..
 linking slvnvdemo_powerwindow_vs:399:214 ..
 linking slvnvdemo_powerwindow_vs:399:218 ..
 linking slvnvdemo_powerwindow_vs:399:273 ..
 linking slvnvdemo_powerwindow_vs:160 ..
 linking slvnvdemo_powerwindow_vs:160:643 ..
 linking slvnvdemo_powerwindow_vs:160:646 ..
 linking slvnvdemo_powerwindow_vs:160:590 ..
 linking slvnvdemo_powerwindow_vs:160:591 ..
 linking slvnvdemo_powerwindow_vs:160:648 ..
 linking slvnvdemo_powerwindow_vs:160:592 ..

Created 23 links for slvnvdemo_powerwindow_vs

 linking slvnvdemo_powerwindowController:39 ..
 linking slvnvdemo_powerwindowController:40 ..
 linking slvnvdemo_powerwindowController:36 ..

Created 3 links for slvnvdemo_powerwindowController

USE CASE 2: Reuse Existing Links After Replacing Linked Destination Artifact

In the course of design project development, there may be need to migrate to a new set of
Requirements. If current Requirements have links, and when there is a known rule to associate
original linked requirements with the corresponding entries in the new Requirement Set, you may
want to automatically migrate the links where possible, to avoid redoing all the linking manually.
Migrating existing links is preferred over re-creating new links, because you keep the existing
metadata such as keywords, rationale statements, comment history.

To quickly put together an example situation where you may need to migrate links, we will start with
the Requirements imported from a Microsoft Word document, then create some links.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-63

We then create some links, either interactively (by drag-and-drop in Requirements Perspective mode)
or using the API, to allow navigation between Simulink objects and imported requirements.

1 Requirements Definition

1-64

Navigation from Simulink object is done either via the context menu or with one click when in
Requirements Perspective mode.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-65

examplesFolder = fullfile(matlabroot, 'toolbox', 'slrequirements', 'slrequirementsdemos');
docsFolder = fullfile(examplesFolder, 'powerwin_reqs');
addpath(docsFolder); % just in case
externalDocName = 'PowerWindowSpecification';
externalDoc = fullfile(docsFolder, [externalDocName '.docx']);
outputFile = fullfile(workDir, 'ReadOnlyImport.slreqx');
[~,~,roReqSet] = slreq.import(externalDoc, 'ReqSet', outputFile); % without extra...
% arguments the default import mode is "read-only references"
roReqSet.save();
roItem = roReqSet.find('CustomId', 'Simulink_requirement_item_2');
designModel = 'slvnvdemo_powerwindowController';
link1 = slreq.createLink([designModel '/Truth Table'], roItem); % link to read-only item...
% in imported set
link2 = slreq.createLink([designModel '/Truth Table1'], roItem); % link 2nd block to the...
% same read-only item
slreq.show(link1.source()); % highlight te source of 1st link
slreq.show(link1.destination()); % navigate to the target of 1st link
rmi('view', [designModel '/Truth Table1'], 2); % navigate 2nd link from Truth Table1...
% using legacy RMI('view') API

Updating Links for Navigation to Alternative Imported Requirement Set

Note that we imported our Word document "as read-only references", which is the default for
slreq.import command when run without optional arguments. This import mode allows to later
update the imported items when the newer version of the source document becomes available. Now,
supposed that we changed our mind: we want our imported items to be fully editable in Simulink
Requirements Editor, including additions, deletions, and structural moves. Although you can Unlock
and edit properties of items imported "as references", you cannot reorder the imported items or add
new ones, and if you delete an item, it will re-appear when performing the next update from the
modified external document. When unrestricted editing capability is needed, we use a different
import mode: "as editable requirements", by providing an additional AsReference argument for the
slreq.import command, and specifying false as the value.

This generates a new Requirement Set, to be managed exclusively in Simulink Requirements. There
is no connection with the original external document, and you are free to add/move/delete entries as

1 Requirements Definition

1-66

needed. Now, you do not need to Unlock imported items to modify the Description or other
properties:

However, there is problem: our previously created links connect from Simulink to the original read-
only References, not to the more recently imported editable Requirements. The solution is to create
and run a script that redirects the existing links to corresponding items in the newly imported
(editable) set. We use setDestination API to perform the required updates.

After we loop over all links in the LinkSet, and adjust the affected links to connect with corresponding
editable items, when we navigate from the model block, the correct item in editable set opens, and
incoming links from both blocks are shown.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-67

Below is the example script that accomplishes this task.

outputFile = fullfile(workDir, 'EditableImport.slreqx');
% re-import as Editable Requirements
[~,~,mwReqSet] = slreq.import(externalDoc, 'ReqSet', outputFile, 'AsReference', false);
mwReqSet.save();
linkSet = slreq.find('type', 'LinkSet', 'Name', designModel); % LinkSet for our design model
links = linkSet.getLinks(); % all outgoing links in this LinkSet
updateCount = 0;
for linkIdx = 1:numel(links)
 link = links(linkIdx);
 if strcmp(link.destination.reqSet, [roReqSet.Name '.slreqx']) % if this link points to...
 % an item in read-only ReqSet
 sid = link.destination.sid; % internal identifier of linked read-only item
 roItem = mwReqSet.find('SID', sid); % located the linked read-only item
 id = roItem.Id; % document-side identifier of imported read-only item
 mwItem = mwReqSet.find('Id', id); % located a matching item in Editable...
 % Requirement Set

1 Requirements Definition

1-68

 link.setDestination(mwItem);
 updateCount = updateCount + 1;
 end
end
disp(['Updated ' num2str(updateCount) ' links from ' designModel]);

Updated 2 links from slvnvdemo_powerwindowController

slreq.show(link.destination()); % check updated destination of the last...
% link we modified
rmi('view', [designModel '/Truth Table1'], 2); % navigate again (legacy API), editable...
% item selected in RE

USE CASE 3: Reuse Existing Outgoing Links After Replacing Source Objects

Consider the situation when you have a SubSystem with lots of links to Requirements, and this
subsystem needed to be redesigned or entirely replaced. The new implementation is mostly similar,
and you would like to preserve the existing links where possible (where blocks with the same name
exists in the same level of the model structure hierarchy). This will allow to limit manual linking steps
to only the blocks that did not exist in the original implementation. You use setSource API to re-
attach the existing links at new source objects after replacing the SubSystem. Note that you cannot
simply keep using the old links, because links rely on unique persistent session-independent
identifiers (SIDs) to associate the link source object (the Simulink object that "owns" the link), and
your replacement SubSystem has new SIDs for each object.

To demonstrate the use of setSource API with our example model, we will simply replace two Truth
Table blocks that we linked in the previous section with same exact new blocks. Once this is done, the
links become unresolved, because new Truth Table copies have new SIDs.

In the Requirements Editor, click Show Links and notice the orange triangle indicators for all the
broken links. There is a total of 4, because each of the replaced blocks had 2 links: one link to the
surrogate item in slvnvdemo_powerwindowController.slreqx and another link to an imported
requirement in ReadOnlyImport.slreqx.

slreq.open('slvnvdemo_powerwindowController.slreqx')

ans =
 ReqSet with properties:

 Description: ''
 Name: 'slvnvdemo_powerwindowController'
 Filename: 'C:\Users\ahoward\AppData\Local\Temp\tp048cdc5c_b22d_44f6_bb6c_85d54e962505\slvnvdemo_powerwindowController.slreqx'
 Revision: 1
 Dirty: 0
 CustomAttributeNames: {}
 CreatedBy: 'ahoward'
 CreatedOn: 14-Jan-2021 15:22:27
 ModifiedBy: 'ahoward'
 ModifiedOn: 14-Jan-2021 15:22:27

 Use Command-line API to Document Simulink Model in Requirements Editor

1-69

originalModel = 'slvnvdemo_powerwindowController';
updatedModel = 'UpdatedModel';
save_system(originalModel, fullfile(workDir, [updatedModel '.slx'])); % this also creates...
% .slmx file in workDir
delete_line(updatedModel, 'Mux1/1', 'Truth Table/1'); % disconnect original block
delete_line(updatedModel, 'Truth Table/1', 'control/3'); % disconnect original block
add_block([updatedModel '/Truth Table'], [updatedModel '/New Truth Table']); % create...
% replacement block
delete_block([updatedModel '/Truth Table']); % delete original block
add_line(updatedModel, 'Mux1/1', 'New Truth Table/1'); % reconnect new block
add_line(updatedModel, 'New Truth Table/1', 'control/3'); % reconnect new block
set_param([updatedModel '/New Truth Table'], 'Name', 'Truth Table'); % restore original name
delete_line(updatedModel, 'Mux4/1', 'Truth Table1/1'); % disconnect original block
delete_line(updatedModel, 'Truth Table1/1', 'control/4'); % disconnect original block
add_block([updatedModel '/Truth Table1'], [updatedModel '/New Truth Table1']); % create...
% replacement block
delete_block([updatedModel '/Truth Table1']); % delete original block
add_line(updatedModel, 'Mux4/1', 'New Truth Table1/1'); % reconnect new block
add_line(updatedModel, 'New Truth Table1/1', 'control/4'); % reconnect new block
set_param([updatedModel '/New Truth Table1'], 'Name', 'Truth Table1'); % restore original name

1 Requirements Definition

1-70

Update Source Ends to Repair Broken Links

Now we need to iterate over all the links in the new model, identify the ones with unresolved source
using isResolvedSource API, then use setSource command to fix each broken link. Because we
cannot rely on the old SIDs to find the needed new sources of the link, we open the original model to
discover the original block's path and name, then locate the corresponding replacement block in the
updated model.

See the example script below. When you run this script, it reports 4 links fixed. Check the Links View
in Simulink Requirements Editor and confirm that all the links are now resolved, there are no orange
icon indicators anywhere.

open_system(originalModel);
updatedLinkSet = slreq.find('type', 'LinkSet', 'Name', updatedModel);
links = updatedLinkSet.getLinks();
fixCount = 0;
for linkIdx = 1:numel(links)
 link = links(linkIdx);
 if ~link.isResolvedSource()
 missingSID = link.source.id;
 origBlockHandle = Simulink.ID.getHandle([originalModel missingSID]);
 origBlockPath = getfullname(origBlockHandle);
 [~,blockPath] = strtok(origBlockPath, '/');
 updatedBlockPath = [updatedModel blockPath];
 updatedModelSID = Simulink.ID.getSID(updatedBlockPath);

 Use Command-line API to Document Simulink Model in Requirements Editor

1-71

 updatedBlockHandle = Simulink.ID.getHandle(updatedModelSID);
 link.setSource(updatedBlockHandle);
 fixCount = fixCount + 1;
 end
end
updatedLinkSet.save();
disp(['Fixed ' num2str(fixCount) ' links in ' updatedModel '.slmx']);

Fixed 4 links in UpdatedModel.slmx

Cleanup

To cleanup after performing the above steps, we close all models and remove all files that were
created by scripts in this example. slreq.clear command will remove all Requirements and Links
data from MATLAB session memory, so as to avoid conflicting with what you do next.

slreq.clear();
bdclose('all');
rmpath(workDir);
rmpath(docsFolder);
rmdir(workDir,'s');
 % clear stored import location for our document to avoid prompt on rerun
slreq.import.docToReqSetMap(externalDoc,'clear');

1 Requirements Definition

1-72

Round-Trip Importing and Exporting for ReqIF Files
Many third-party requirements management applications can export and import requirements using
the ReqIF format. If you manage your requirements in a third-party tool, you can import the
requirements to Simulink Requirements, edit the requirements, and export the requirements back to
your third-party tool with ReqIF files. This procedure is referred to as a ReqIF round trip.

ReqIF represents requirements as SpecObject objects and links as SpecRelation objects between
SpecObject objects. Each SpecObjectType object specifies the associated SpecObject object and
the SpecRelationType objects classify each SpecRelation object. The SpecObjectType and
SpecRelationType objects define attributes to store requirements and link information. The
SpecObject and SpecRelation object contain values for these attributes.

For more information about ReqIF data organization, see Exchange Document Content in
Requirements Interchange Format (ReqIF) Version 1.2 .

Considerations for Importing Requirements
You can import requirements from ReqIF files in the Requirements Editor. For more information, see
“Import Requirements from ReqIF Files” on page 1-16.

Import Mapping Considerations

When you import requirements from ReqIF files, you can choose which import mapping to use. For
more information, see “Choosing an Import Mapping” on page 1-16.

If you use a generic mapping during import, you must use a generic mapping during export. The
export mapping affects the content exported to the ReqIF file. For more information, see
“Considerations for Exporting Requirements” on page 1-75.

Considerations for ReqIF Files with Multiple Specifications

When you import requirements from ReqIF files with multiple specifications, you can:

• Select a single ReqIF source specification to import into a requirement set
• Combine ReqIF source specifications into one requirement set
• Import each ReqIF source specification into a separate requirement set

For more information, see “Importing Requirements from a ReqIF File with Multiple Specifications”
on page 1-20.

When you export requirements to a ReqIF file, you can only export one requirement set at a time.
Consequently, if you plan to perform a ReqIF round trip with a ReqIF file with multiple source
specifications, consider which of the three import methods in “Importing Requirements from a ReqIF
File with Multiple Specifications” on page 1-20 allows you to export your requirements with your
preferred number of ReqIF files.

Edit Imported Content
Edit imported requirements content by using the Requirements Editor. Depending on the import
mode that you use, the requirements import as referenced requirements or requirements, which are

 Round-Trip Importing and Exporting for ReqIF Files

1-73

https://www.omg.org/spec/ReqIF/1.2/PDF

slreq.Reference or slreq.Requirement objects, respectively. For more information, see “Select
an Import Mode” on page 1-7.

Edit the Attribute Mapping

When you import requirements from a ReqIF file, the import process maps SpecObjectType object
attributes to built-in requirement properties or requirement custom attributes. For more information
about SpecObjectType object attributes, see “Choosing an Import Mapping” on page 1-16.

After you import the requirements, you can map the SpecObjectType objects to requirement types.
You can also edit the SpecObject object attribute mappings to requirement properties. See
“Mapping ReqIF Attributes in Simulink Requirements” on page 1-23.

Edit Imported Requirements

You can edit a requirement or referenced requirement and change the requirement properties such
as the Summary or Description. You can also define custom attributes for the requirement set and
set values for those custom attributes. For more information, see “Customize Requirements with
Custom Attributes” on page 1-48.

Before you edit an imported referenced requirement, you must unlock it. To unlock all requirements
in the requirement set, select the top-level Import node of the requirement set and, in the Details
pane, under Requirement Interchange, click Unlock all.

To unlock individual requirements, navigate to the requirement and, in the Details pane, under
Properties, click Unlock.

To add, remove, and edit custom attributes associated with the requirement set, select the
requirement set and use the interface in the Details pane under Custom Attribute Registries. For
more information about managing custom attributes for requirements, see “Customize Requirements
with Custom Attributes” on page 1-48. Select an individual referenced requirement and unlock it to
set custom attribute values.

1 Requirements Definition

1-74

Update Imported Requirements Content

If you select Allow updates from external source during the import operation, you can update your
imported requirement sets with data from the updated ReqIF file. Select the Import node of the
requirement set and, in the Details pane, under Requirement Interchange, click Update. The
update operation overwrites all local modifications, such as edits to unlocked referenced
requirements. The update operation preserves comments and local attributes. For more information,
see “Manage Imported Requirements with External Applications” on page 1-9.

Link Requirements to Items in MATLAB and Simulink
When you link a requirement to an item in MATLAB or Simulink and then export the requirements to
a ReqIF file, Simulink Requirements creates a proxy object for that object in the exported file. If the
linked item is one of the supported types, the proxy object has a type value that describes the linked
object type. For more information, see “Exporting Links” on page 1-41.

When you re-import the ReqIF file generated by the Simulink Requirements, the software
reconstructs the links between requirements and the items represented by the proxy objects of the
supported types. For more information, see “Importing Links from a ReqIF File Generated by
Simulink Requirements” on page 1-23.

Considerations for Exporting Requirements
You can export a requirement set, an Import node, or a parent requirement and its children to a
ReqIF file. When you export requirements, you can also export links associated with the
requirements. For more information, see “Export Requirements to ReqIF Files” on page 1-38.

When you export requirements and links, you can choose which export mapping to use. You can
either reuse the same mapping that you used during import, or use a generic mapping. For more
information, see “Choosing an Export Mapping” on page 1-38.

The export mapping that you use affects the content that is exported to the ReqIF file:

• SpecObjectType object values
• SpecObject object attributes
• SpecRelationType object values

You can export the requirement type when you define and use custom requirement types and export
using the generic mapping. For more information, see “Using the Generic Mapping During Export” on
page 1-39.

For more information about how the export mapping affects the exported content, see “Choosing an
Export Mapping” on page 1-38.

See Also
slreq.import

More About
• “Import Requirements from ReqIF Files” on page 1-16
• “Export Requirements to ReqIF Files” on page 1-38

 Round-Trip Importing and Exporting for ReqIF Files

1-75

• “Create and Edit Attribute Mappings” on page 1-84
• “Import Requirements from Third-Party Applications” on page 1-7
• “Update Imported Requirements” on page 1-52
• “Best Practices and Guidelines for ReqIF Round Trip Workflows” on page 1-77

1 Requirements Definition

1-76

Best Practices and Guidelines for ReqIF Round Trip Workflows
Managing Requirement Custom IDs
• When you import requirements as referenced requirements, Simulink Requirements attempts to

map a requirement identifier generated by the third-party requirements management application
to the Custom ID attribute of the requirement. Verify that the intended attribute mapping between
the Custom ID and the requirement identifier is selected.

• Do not modify the requirement custom ID attribute to maintain traceability.

Guidelines for Updating Referenced Requirements Content
• The Update operation overwrites local modifications such as edits to unlocked referenced

requirements with values from the ReqIF source file. Save, check-in, or export your requirement
set files before attempting the Update operation.

• The Update operation preserves comments and attributes. Do not delete imported custom
attributes as they will be restored when you update the requirement set. For a complete ReqIF
round trip workflow, include all previously imported attributes.

Guidelines for Editing Referenced Requirements Content
• Rich text attributes like the Description and Rationale may lose some formatting, particularly

tables, during the round trip workflow. To preserve formatting, edit these attributes in the same
application. Plain text attributes can be edited in multiple applications.

• Rename imported attributes through the Attribute Mapping pane of the Requirements Editor to
maintain the connection to the corresponding attribute in the external requirements document
during the Export operation.

Guidelines for Adding Details to Imported Requirements
You can add additional details to imported requirements by:

• Adding additional attributes
• Authoring new requirements and linking imported requirements to them

You cannot insert locally authored requirements as children of imported requirements. To associate
newly authored requirements with imported requirements, add them to a separate requirement set
and link related requirements.

Guidelines for Exporting Requirements to ReqIF Files
• Do not import requirements from multiple ReqIF files into the same requirement set. Each ReqIF
file can contain multiple specifications which get imported under separate top Import nodes in the
requirement set. Every Import node has a Custom ID that matches the name of the specification.

• Do not import referenced requirements into a requirement set that contains locally authored
requirements. For round trip workflows, reuse the previous import settings to requirements that
were previously imported.

• You cannot update requirements you author within Simulink Requirements if you export them to
ReqIF. Import the exported file as referenced requirements into a new requirement set that you

 Best Practices and Guidelines for ReqIF Round Trip Workflows

1-77

can update in the future. Links created to authored requirements will not be preserved when you
re-import them. Export and re-import the locally authored requirements before you create links.

See Also

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73
• “Update Imported Requirements” on page 1-52

1 Requirements Definition

1-78

Manage Custom Attributes for Requirements by Using the
Simulink® Requirements™ API

This example shows how to use the Simulink® Requirements™ API to create custom attributes for
requirement sets and set custom attribute values for requirements.

Establish Requirement Set

Load the requirement file crs_req_func_spec, which describes a cruise control system, and assign
it to a variable.

rs = slreq.load('crs_req_func_spec');

Add a Custom Attribute of Each Type

Add a custom attribute of each type to the requirement set. Create an Edit custom attribute with a
description.

addAttribute(rs,'MyEditAttribute','Edit','Description',...
 'You can enter text as the custom attribute value.')

Create a Checkbox type attribute and set its DefaultValue property to true.

addAttribute(rs,'MyCheckboxAttribute','Checkbox','DefaultValue',true)

Create a Combobox custom attribute. Because the first option must be 'Unset', add the options
'Unset', 'A', 'B', and 'C'.

addAttribute(rs,'MyComboboxAttribute','Combobox','List',{'Unset','A','B','C'})

Create a DateTime custom attribute.

addAttribute(rs,'MyDateTimeAttribute','DateTime')

Check the defined custom attributes for the requirement set. Get information about
MyComboboxAttribute to see the options you added.

rs.CustomAttributeNames

ans = 1x4 cell
 Columns 1 through 3

 {'MyCheckboxAttr...'} {'MyComboboxAttr...'} {'MyDateTimeAttr...'}

 Column 4

 {'MyEditAttribute'}

atrb = inspectAttribute(rs,'MyComboboxAttribute')

atrb = struct with fields:
 name: 'MyComboboxAttribute'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

 Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API

1-79

Set a Custom Attribute Value for a Requirement

Find a requirement in the requirement set, and set the custom attribute value for all four custom
attributes that you created.

req = find(rs,'Type','Requirement','SID',3);
setAttribute(req,'MyEditAttribute','Value for edit attribute.');
setAttribute(req,'MyCheckboxAttribute',false);
setAttribute(req,'MyComboboxAttribute','B');

Set MyDateTimeAttribute with the desired locale to ensure that the date and time is set in the
correct format on systems in other locales. See “Locale” for more information.

localDateTimeStr = datestr(datetime('15-Jul-2018 11:00:00','Locale','en_US'),'Local');
setAttribute(req,'MyDateTimeAttribute',localDateTimeStr);

View the attribute values.

getAttribute(req,'MyEditAttribute')

ans =
'Value for edit attribute.'

getAttribute(req,'MyCheckboxAttribute')

ans = logical
 0

getAttribute(req,'MyComboboxAttribute')

ans =
'B'

getAttribute(req,'MyDateTimeAttribute')

ans = datetime
 15-Jul-2018 11:00:00

Edit Custom Attributes

After you define a custom attribute for a link set, you can make limited changes to the custom
attribute.

Add a description to MyCheckboxAttribute and MyComboboxAttribute, and change the list of
options for MyComboboxAttribute. Because you cannot update the default value of Checkbox
attributes, you can only update the description of MyCheckboxAttribute. View the changes.

updateAttribute(rs,'MyCheckboxAttribute','Description',...
 'The checkbox value can be true or false.');
updateAttribute(rs,'MyComboboxAttribute','Description',...
 'Choose an option from the list.','List',{'Unset','1','2','3'});
atrb2 = inspectAttribute(rs,'MyCheckboxAttribute')

atrb2 = struct with fields:
 name: 'MyCheckboxAttribute'
 type: Checkbox
 description: 'The checkbox value can be true or false.'

1 Requirements Definition

1-80

 default: 1

atrb3 = inspectAttribute(rs,'MyComboboxAttribute')

atrb3 = struct with fields:
 name: 'MyComboboxAttribute'
 type: Combobox
 description: 'Choose an option from the list.'
 list: {'Unset' '1' '2' '3'}

Find Requirements that Match Custom Attribute Value

Search the requirement set for all requirements where 'MyEditAttribute' is set to 'Value for
edit attribute.'

req2 = find(rs,'Type','Requirement','MyEditAttribute','Value for edit attribute.')

req2 =
 Requirement with properties:

 Type: 'Functional'
 Id: '#3'
 Summary: 'Avoid repeating commands'
 Description: '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">...'
 Keywords: {}
 Rationale: ''
 CreatedOn: 27-Feb-2017 10:15:38
 CreatedBy: 'itoy'
 ModifiedBy: 'batserve'
 SID: 3
 FileRevision: 46
 ModifiedOn: 01-Sep-2021 19:06:48
 Dirty: 1
 Comments: [0x0 struct]
 Index: '1.2'

Search the requirement set for all requirements where 'MyCheckboxAtribute' is set to true.

reqsArray = find(rs,'Type','Requirement','MyCheckboxAttribute',true)

reqsArray=1×69 object
 1x69 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty

 Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API

1-81

 Comments
 Index

Search the requirement set for all requirements where 'MyComboboxAttribute' is set to 'Unset'.

reqsArray2 = find(rs,'Type','Requirement','MyComboboxAttribute','Unset')

reqsArray2=1×70 object
 1x70 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Delete Custom Attributes

You can use deleteAttribute to delete attributes. However, because the custom attributes created
in this example are assigned to requirements, you must set 'Force' to true to delete the attributes.
Delete 'MyEditAttribute' and confirm the change.

deleteAttribute(rs,'MyEditAttribute','Force',true);
rs.CustomAttributeNames

ans = 1x3 cell
 {'MyCheckboxAttri...'} {'MyComboboxAttri...'} {'MyDateTimeAttri...'}

Add a new custom attribute, but don't set any requirement custom attribute values for requirements.

addAttribute(rs,'NewEditAttribute','Edit');
rs.CustomAttributeNames

ans = 1x4 cell
 Columns 1 through 3

 {'MyCheckboxAttr...'} {'MyComboboxAttr...'} {'MyDateTimeAttr...'}

 Column 4

 {'NewEditAttribute'}

Because 'NewEditAttribute' is not used by any requirements, you can delete it with
deleteAttribute by setting 'Force' to false. Confirm the change.

1 Requirements Definition

1-82

deleteAttribute(rs,'NewEditAttribute','Force',false);
rs.CustomAttributeNames

ans = 1x3 cell
 {'MyCheckboxAttri...'} {'MyComboboxAttri...'} {'MyDateTimeAttri...'}

Cleanup

Clear the open requirement sets without saving changes and close the open models without saving
changes.

slreq.clear;
bdclose all;

See Also
slreq.ReqSet | addAttribute | deleteAttribute | updateAttribute | inspectAttribute |
getAttribute | setAttribute

Related Examples
• “Manage Custom Attributes for Links by Using the Simulink® Requirements™ API” on page 2-

65

More About
• “Customize Requirements with Custom Attributes” on page 1-48

 Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API

1-83

Create and Edit Attribute Mappings
The ReqIF format represents a requirement as a SpecObject. The SpecObject has a
SpecObjectType, which defines attributes to store requirements information. The SpecObjects
contains values for these attributes.

After you import requirements from a ReqIF file, you can customize how attributes from ReqIF
requirements map to Simulink Requirements requirement properties and custom attributes. For more
information, see “Customize Requirements with Custom Attributes” on page 1-48. You can also save
this mapping for reuse.

Edit the Attribute Mapping for Imported Requirements
You can import requirements from ReqIF files in the Requirements Editor. For more information, see
“Import Requirements from ReqIF Files” on page 1-16.

When you import requirements from ReqIF files, you must choose an import mapping to use. The
imported requirement type, properties, and imported link type depend on the import mapping that
you choose. For more information, see “Choosing an Import Mapping” on page 1-16.

After you import requirements from a ReqIF file, you can edit the attribute mapping for the imported
requirements:

1 Open the Requirements Editor and import the ReqIF file. For more information, see “Import
Requirements from ReqIF Files” on page 1-16.

2 Select the Import node or the top-level requirement, depending on if you imported referenced
requirements or requirements. For more information, see “Select an Import Mode” on page 1-7.

You can see the attribute mappings in the Details pane, under Attribute Mapping.

1 Requirements Definition

1-84

3 Edit the mapping by selecting a property or attribute from the drop-down in the Mapped To
column.

Note When editing the attribute mapping, you can only map an attribute to a built-in
requirement type. You cannot select a custom attribute from the drop-down in the Mapped To
column.

You can save the current attribute mapping by clicking Save mapping. The mapping saves as an
XML file. You can load a saved mapping by clicking Load mapping.

To change the name or description of the attribute mapping, open the XML file that you created in a
text editor and modify the values of the <name> and <description> tags.

To have Simulink Requirements select the import attribute mapping based on the tool that originally
created the ReqIF file:

1 In a text editor, open the attribute mapping and the ReqIF file.
2 Find the value of the <REQ-IF-TOOL-ID> tag in the ReqIF file.
3 Change the value of the <name> tag in the attribute mapping file to match the value of the <REQ-

IF-TOOL-ID> tag.

 Create and Edit Attribute Mappings

1-85

Specify Default ReqIF Requirement Type
Some external requirements management tools, such as Polarion, support multiple types of
requirements. In this case, modify the attribute mapping file to specify the default ReqIF requirement
type to use when exporting to ReqIF. For example:

<thisType>SpecObject</thisType>
<thisSubType>System Requirement</thisSubType>

The value of the <thisSubType> tag indicates that each exported SpecObject will have the
SpecObject type as System Requirement.

Specify ReqIF Template
Some external requirements management tools, such as Polarion and IBM Rational DOORS, require a
specific set of ReqIF data type, attribute, and SpecObject type definitions. They may also require
that the ReqIF specification be of a certain type. You can supply these definitions by specifying the
name of a template ReqIF file in the mapping file produced by the external requirements
management tool. During ReqIF export, Simulink Requirements imports the template file and uses it
to generate and export a ReqIF file with a format that is compatible with the external tool.

Save the template files in the same folder as the attribute mapping file, matlabroot/toolbox/
slrequirements/attribute_maps. To specify a template file in the attribute mapping, open the
attribute mapping file that corresponds to the external requirements management tool in a text
editor. Modify the value of the <templateFile> tag to match the name of the template file. You
might need to restart MATLAB to be able to select the mapping file in the Importing Requirements
dialog.

See Also

More About
• “Import Requirements from ReqIF Files” on page 1-16
• “Export Requirements to ReqIF Files” on page 1-38
• “Round-Trip Importing and Exporting for ReqIF Files” on page 1-73
• “Best Practices and Guidelines for ReqIF Round Trip Workflows” on page 1-77

1 Requirements Definition

1-86

Import Requirements from IBM Rational DOORS by using the
API

This example shows you how to import requirements from an IBM® Rational® DOORS® module by
using the Simulink® Requirements™ API.

Configure IBM Rational DOORS

To interface with IBM Rational DOORS, configure MATLAB®. At the MATLAB command prompt,
enter:

rmi setup doors

For more information, see “Configure IBM Rational DOORS Session” on page 1-33.

Open the DOORS Project

In this example, you will use the DemoRMI.dpa project in IBM Rational DOORS, which contains
requirements modules that describe a fault-tolerant control system.

In IBM Rational DOORS, create a new project:

1 Select File > New > Project.
2 In the New Project dialog, enter ExampleProject in the Name field.
3 In the Description field, enter Example MATLAB/Simulink project.
4 Select Use a project archive.
5 Click Browse and select DemoRMI.dpa.

Import a Requirements Module

In this example, you will import all of the requirements from the FuelSys Requirements
Specification module.

In IBM Rational DOORS, open the FuelSys Requirements Specification module and find the
module ID. For more information, see How to identify the unique ID for an item in DOORS database
explorer on the IBM website.

Use slreq.import to import the module. Enter the name of the requirement set file, specify that the
requirements are referenced requirements and should use Rich Text Formatting, name the

 Import Requirements from IBM Rational DOORS by using the API

1-87

https://www.ibm.com/support/pages/how-identify-unique-id-item-doors-database-explorer
https://www.ibm.com/support/pages/how-identify-unique-id-item-doors-database-explorer

requirement set fuelSysReqSpec, and enter the module ID. The function returns the number of
imported referenced requirements, the requirement set file path, and the requirement set object.

[refCount1,reqSetFilePath1,myReqSet1] = slreq.import("linktype_rmi_doors", ...
 AsReference=true,RichText=true,ReqSet="fuelSysReqSpec",DocID="000001c1")

Importing from 000001c1 of type linktype_rmi_doors ..
.. done.

refCount1 = 59

reqSetFilePath1 =
'C:\Users\jdoe\MATLAB\Examples\ImportRequirementsFromIBMRationalDOORSByUsingTheAPIExample\fuelSysReqSpec.slreqx'

myReqSet1 =
 ReqSet with properties:

 Description: ''
 Name: 'fuelSysReqSpec'
 Filename: 'C:\Users\jdoe\MATLAB\Examples\ImportRequirementsFromIBMRationalDOORSByUsingTheAPIExample\fuelSysReqSpec.slreqx'
 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'ahoward'
 CreatedOn: NaT
 ModifiedBy: 'ahoward'
 ModifiedOn: 12-Jul-2021 08:52:09

Import a Subset of Requirements from a Module

You can import a subset of requirements from the FuelSys Design Description module by
appling a filter. Open the FuelSys Design Description module in IBM Rational DOORS.

Filter the Requirements Module

Apply a filter to the module. For more information on applying a filter to a requirements module, see
Defining filters on the IBM website. In the Filtering dialog:

1 Set Attribute to Absolute Number.
2 Set Condition to is less than or equal to.
3 Next to Value, enter 10.

1 Requirements Definition

1-88

https://www.ibm.com/docs/en/ermd/9.6.1?topic=modules-defining-filters

The module displays only requirements that match the filter.

 Import Requirements from IBM Rational DOORS by using the API

1-89

When you apply a filter to your DOORS module and import the module to Simulink Requirements, the
process imports only the requirements that match the filter. When you import requirements by using
the API, Simulink Requirements does not store the filter for future use.

Import the Filtered Requirements Module

To import the filtered requirements module, use slreq.import. Enter the name of the requirement
set file, specify that the requirements are referenced requirements and should use Rich Text
Formatting, name the requirement set fuelSysDesignSpec, but don't enter the module ID. If you
don't specify the module ID, the slreq.import function imports the active requirements module.

The module contains a requirements attribute called Created Thru. Import the attribute along with
the requirements as a custom attribute. The function returns the number of imported referenced
requirements, the requirement set file path, and the requirement set object.

[refCount2,reqSetFilePath2,myReqSet2] = slreq.import("linktype_rmi_doors",ReqSet="fuelSysDesignSpec",attributes={'Created Thru'})

Importing from FuelSys Design Description of type linktype_rmi_doors ..
 done.

refCount2 = 10

1 Requirements Definition

1-90

reqSetFilePath2 =
'C:\Users\jdoe\MATLAB\Examples\ImportRequirementsFromIBMRationalDOORSByUsingTheAPIExample\fuelSysDesignSpec.slreqx'

myReqSet2 =
 ReqSet with properties:

 Description: ''
 Name: 'fuelSysDesignSpec'
 Filename: 'C:\Users\jdoe\MATLAB\Examples\ImportRequirementsFromIBMRationalDOORSByUsingTheAPIExample\fuelSysDesignSpec.slreqx'
 Revision: 1
 Dirty: 1
 CustomAttributeNames: {'Created Thru'}
 CreatedBy: 'ahoward'
 CreatedOn: NaT
 ModifiedBy: 'ahoward'
 ModifiedOn: 12-Jul-2021 08:52:45

SImulink Requirements imports only the first 10 requirements from the module and maps the
Created Thru attribute to a new custom attribute in the requirement set.

If you have custom attributes that you want to import as the built-in requirement properties
“Rationale” or “Keywords”, you can use:

slreq.import("linktype_rmi_doors",keywords="Keyword DOORS Attribute",rationale="Rationale DOORS Attribute")

For more information about custom attributes, see “Customize Requirements with Custom Attributes”
on page 1-48.

 Import Requirements from IBM Rational DOORS by using the API

1-91

Update the Filtered Requirement Set

After you import the requirement set, you can update it. For more information, see “Update Imported
Requirements” on page 1-52.

In DOORS, change the applied filter in the FuelSys Design Description module.

In the Filtering dialog:

1 Set Attribute to Absolute Number.
2 Set Condition to is less than or equal to.
3 Next to Value, enter 15.

Find the Import node from the requirement set myReqSet2. Update the requirement set.

importNode = find(myReqSet2,Index="Import1");
status = updateFromDocument(importNode)

Importing from FuelSys Design Description of type linktype_rmi_doors ..
 done.

status =
'Update completed. Refer to Comments on Import1.'

Simulink Requirements amends the requirement set to contain the first 15 requirements.

1 Requirements Definition

1-92

In your DOORS requirements module, update the filter again. For Value, enter 5. Find the Import
node from the requirement set myReqSet2. Update the requirement set.

importNode = find(myReqSet2,Index="Import1");
status = updateFromDocument(importNode)

Importing from FuelSys Design Description of type linktype_rmi_doors ..
 done.

status =
'Update completed. Refer to Comments on Import1.'

Simulink Requirements truncates the requirement set to only contain the first 5 requirements.

Cleanup

Clear the open requirement sets.

slreq.clear;

See Also
updateFromDocument | slreq.import

 Import Requirements from IBM Rational DOORS by using the API

1-93

More About
• “Import Requirements from IBM Rational DOORS” on page 1-33
• “Working with IBM Rational DOORS 9 Requirements” on page 7-50
• “Import Requirements from Third-Party Applications” on page 1-7

1 Requirements Definition

1-94

Requirements Traceability and
Consistency

• “Link Blocks and Requirements” on page 2-2
• “Track Requirement Links with a Traceability Matrix” on page 2-5
• “Visualize Links with a Traceability Diagram” on page 2-18
• “Assess Allocation and Impact” on page 2-27
• “Requirement Links” on page 2-32
• “Define Custom Requirement and Link Types” on page 2-40
• “Customize Links with Custom Attributes” on page 2-43
• “Requirements Consistency Checks” on page 2-46
• “Manage Navigation Backlinks in External Requirements Documents” on page 2-50
• “Use Command-line API to Update or Repair Requirements Links” on page 2-52
• “Manage Custom Attributes for Links by Using the Simulink® Requirements™ API” on page 2-65
• “Make Requirements Fully Traceable with a Traceability Matrix” on page 2-70
• “Modeling System Architecture of Small UAV” on page 2-84

2

Link Blocks and Requirements
You can track requirements implementation by linking requirements to model elements that
implement the requirements. Linking also enables change notification, so that you can review and act
on changes to requirements or models.

In this tutorial, link requirements to a model by using the model requirements perspective. Visual
elements highlight links between requirements and blocks.

1 Open the example project by entering

slreqCCProjectStart

Open crs_controller from the models folder.
2 In the model canvas, click the perspectives control in the lower-right corner.

3 Open the requirements perspective by clicking the Requirements icon.

The Requirements Browser appears at the bottom of the model canvas. When you select a
requirement, the Property Inspector displays the requirement's properties.

4 Link a requirement to a model element:

1 In the Requirements Browser, search for Enable Switch Detection.
2 Link to the enbl Inport block by clicking and dragging the requirement to the block. An

annotation template appears.
3 Place the requirement annotation by clicking on the canvas. Create a link without an

annotation by clicking outside the canvas.

2 Requirements Traceability and Consistency

2-2

5 The block displays a link badge. To display information about the requirement, click the badge
and select Show.

Clicking Show displays the requirement ID, requirement summary, and link type. For information
on link types, see “Requirement Links” on page 2-32.

• To see the requirement description, double-click the annotation.
• To edit the requirement, right-click the annotation and select Select in Requirements

Browser. Edit the requirement properties in the Property Inspector.
6 Exit the requirements perspective. Click the perspectives control and click the requirements

icon.

 Link Blocks and Requirements

2-3

Work with Simulink Annotations
Convert Simulink Annotations to Requirements

You can convert the annotations in your Simulink models to requirements by using the context menu
in the Requirements Perspective View and by using the API. See slreq.convertAnnotation for
more information on converting annotations to requirements by using the API.

To convert annotations to requirements by using the context menu in the Requirements Perspective
View:

1 Open the Simulink model and enter the Requirements Perspective View.
2 Select a requirement set from the Requirements Browser. This is the destination requirement set

for the new requirement.
3 Right click the annotation you want to convert to a requirement and click Convert to

Requirement.
4 The annotation is converted to a requirement and is linked to the system or subsystem at which

the annotation was present.

Link Requirements to Simulink Annotations

Use the Requirements Perspective View to link requirements to text and area annotations on the
Simulink Editor. To create a link, select a requirement and drag it onto the annotation. If you link
requirements to an area annotation, a badge appears on the annotation to show that the link was
created. You see badges only in the Requirements Perspective View. To see more information about
the requirement, click the badge and select Show.

2 Requirements Traceability and Consistency

2-4

Track Requirement Links with a Traceability Matrix
Traceability matrices allow you to easily view requirements and their links to other items.
Traceability matrices show links between requirements, model or test entities, data dictionaries, and
code, and allow you to navigate to link sources or destinations. For example, you can:

• View links between items.
• Create and delete links.
• Inspect and navigate link sources and destinations.
• Focus the display on a hierarchy of a specific artifact or item.
• Apply artifact-specific filters to rows, columns, and cells.
• View and highlight unlinked items.
• View and highlight items with associated change issues and clear the change issues.
• Perform batch operations when you select multiple cells.

Generate a Traceability Matrix
You can create a traceability matrix with two or more artifacts. You can use:

• Simulink Requirements requirement sets
• Simulink models
• System Composer models
• Simulink Test test files
• Simulink data dictionaries
• MATLAB M-files

To open the Traceability Matrix window, use one of these approaches:

• In the Requirements Editor, click Traceability Matrix.
• In a Simulink model, in the Requirements tab, select Share > Open Requirements

Traceability Matrix.
• At the MATLAB command line, enter:

slreq.generateTraceabilityMatrix

To create a traceability matrix:

1 In the Traceability Matrix window, click Add.
2 Generate a matrix with either two artifacts or multiple artifacts.

• To create a matrix with only two artifacts, select the Left and Top artifacts from the Select
Artifacts dialog.

 Track Requirement Links with a Traceability Matrix

2-5

• To create a matrix with multiple artifacts, click Select Multiple Artifacts. In the Configure
Matrix dialog, add artifacts from the Available Artifacts pane to the left or top artifact list by
clicking and dragging, or by right-clicking the artifact and selecting Add to the left or Add
to the top. Remove an artifact from a list by pointing to the artifact and clicking the remove
icon (), or by right-clicking the artifact and selecting Remove Artifacts.

3 Click Generate Matrix. You can reconfigure the artifacts in the matrix by clicking Configure
Matrix, reconfiguring the artifacts, and clicking Update Matrix.

The artifacts in this image are a requirement set and a Simulink model. The requirements are listed
on the left and the blocks of the Simulink model are listed on the top.

2 Requirements Traceability and Consistency

2-6

If you make changes to your artifacts, click Update to refresh your traceability matrix.

Note Unresolved links are not displayed in the traceability matrix.

 Track Requirement Links with a Traceability Matrix

2-7

When you create a traceability matrix with multiple artifacts, a solid blue line indicates the division
between artifacts.

2 Requirements Traceability and Consistency

2-8

Configure a Matrix with Multiple Artifacts

When you create or update a matrix with multiple artifacts, you can use the Configure Matrix dialog
to arrange the artifacts by clicking and dragging to move an artifact from one list to another or
reorder a list by dragging an artifact within a list.

You can add, remove, or arrange multiple artifacts at a time when you hold Ctrl and select multiple
artifacts.

When you select an artifact in the Available Artifacts pane, any artifacts that contain links between
the selected artifact are highlighted. When you add artifacts to the matrix configuration, the expand
icon () in the matrix preview indicates that artifacts have links between them.

In order to be able to add an artifact to the traceability matrix, the artifact must either:

• Be loaded in your MATLAB workspace or Simulink
• Contain links to a loaded artifact
• Be associated with a loaded link set

Modify the Traceability Matrix View
The traceability matrix is a grid where the rows correspond to items from the left artifact and the

columns correspond to items from the top artifact. The arrow icon () in a cell indicates that there
is a link between the item in that row and column. The arrow icon points from the source item to the
destination item.

When you click an arrow icon, you see information about the link.

Expand and Collapse Links

Initially, some rows and columns in your matrix may be collapsed. The expand icon () appears
when a link is obscured because one or both of the hierarchies in the row or column containing the
linked items are collapsed. To expand the hierarchies, double-click the expand icon ().

When you click the expand icon, you see the left and top items that correspond to that cell.

 Track Requirement Links with a Traceability Matrix

2-9

When you click on the items in the information box, the item opens in the associated application for
that artifact type. For example, if you click on a requirement, the Requirements Editor window opens
and displays the specified requirement.

Focus the Display

You can focus the display on the hierarchy of a specific item in your traceability matrix. Select the
artifact or item whose hierarchy you want to display. Click Scope or right-click the item and click
Focus the display.

Your traceability matrix only shows the selected part of the hierarchy. To show the entire hierarchy of
the artifact, right-click the artifact again and click Display Entire Hierarchy.

For matrices with multiple artifacts, you can also focus the display on one of the artifacts by clicking
the artifact from the list at the top of the matrix. To remove the focus from just one artifact, click
Show All in the artifact list at the top of the matrix.

To expand the hierarchy of an artifact, right-click on the artifact whose hierarchy you want to expand
and click Expand All. To collapse the hierarchy of an artifact, right click on the artifact whose
hierarchy you want to collapse and click Collapse All.

2 Requirements Traceability and Consistency

2-10

Apply Filters

You can apply filters from the Filter Panel to the top artifact, the left artifact, or the cells. Click the
filter to apply it, and click it again to remove it.

Each artifact has type-specific filters. When you create a traceability matrix with multiple artifact
types, the pane lists filters by artifact types and uses icons to indicate the type. The Missing Links
filter and all filters under Cell always appear.

 Track Requirement Links with a Traceability Matrix

2-11

2 Requirements Traceability and Consistency

2-12

If you apply a filter to an artifact, the matrix only shows items with those specific properties. For
example, if, under Top, you click Missing Links, the traceability matrix only shows items from the
top artifact that are not linked to other items. However, if a parent item does not have these specific
properties but one or more of its children does, then the parent item and links to the parent item
appear in the matrix, but are dimmed. For example, if you apply the Leaf Block filter to a model, the
matrix shows subsystem blocks that contain leaf blocks, but dims subsystem blocks and links to
subsystem blocks.

If you apply a filter to the cells, the matrix only shows the links that have those properties. However,
no rows or columns are omitted. For example, if, under Cell, you click With Change Issues, the
traceability matrix only shows the links that have change issues, but shows all rows and columns.

When you add a filter to the left or top artifacts of the traceability matrix, the filter appears at the top
of the matrix next to the artifact name. You can clear the filters by clicking Clear Filter or, in the
Filter Panel, by clicking the filter again.

If one of the artifacts in your traceability matrix is a Simulink model, then you can apply the Missing
Expected Links filter. This filter displays unlinked Simulink blocks or subsystems that require links
to meet HISL 0070.

Highlight Missing Links

To highlight unlinked cells in your traceability matrix, click Highlight Missing Links. The unlinked
items in your traceability matrix are highlighted in yellow.

 Track Requirement Links with a Traceability Matrix

2-13

The unlinked items are highlighted even if they are not visible in the current matrix view. View the
hierarchy for the entire traceability matrix to see all items with missing links. See “Focus the Display”
on page 2-10.

Work with Links in the Traceability Matrix
Add a New Link

Create a link by clicking on a cell, then click Create Link or Create in the information box to create
a link between the item in the row and the item in the column.

2 Requirements Traceability and Consistency

2-14

The Create Link window populates the link source and destination. You can reverse the link source

and destination by clicking the reverse button (). The link is saved in the link set associated with
the artifact that the source item belongs to. If there is no link set associated with that artifact, a link
set is created with the same name as the artifact.

Note If you create a traceability matrix using the same requirement set for the left and top artifact,
you cannot create a link where the source and destination items are the same requirement. You also
cannot create a link where the source or destination item is the requirement set.

Remove a Link

Remove a link by clicking on a cell containing a link and clicking Remove Links or pressing Del. The
Remove Links dialog box appears and shows the link artifacts, type, and label. Click Remove to
remove the link.

View and Clear Change Issues for Links

A link has a change issue if the requirement associated with the link changes. To learn how to enable
change tracking and use the Requirements Editor to view and clear change issues, see “Track
Changes to Requirement Links” on page 4-3.

You can view links with change issues in the traceability matrix by applying the With Change Issues
filter or by selecting Highlight Missing Links > Show Changed Links Only. You can highlight
links with change issues by clicking Highlight Missing Links > Highlight Changed Links. The
row, column, and cell corresponding to the link with a change issue are highlighted in red.

 Track Requirement Links with a Traceability Matrix

2-15

To clear a change issue for a link, select the cell containing the link and click Clear Change Issue.

Perform Batch Operations on Multiple Cells

Create a rectangular cell selection by clicking and dragging, or by pressing Shift and clicking the
cells. You can press Ctrl and click to toggle cells in the selection or to create a selection of individual
cells.

You can add or remove links or clear change issues for multiple links at a time when you select
multiple cells.

2 Requirements Traceability and Consistency

2-16

Export the Traceability Matrix
You can export the traceability matrix as an HTML report or as a MATLAB variable that contains the
table data.

Generate the HTML report by clicking Export > Generate HTML Report. Name and save the
report. The report automatically opens.

The HTML report is not interactive. Create the view that you want to export by focusing the display,
collapsing or expanding hierarchies, or applying filters and highlighting. The HTML report lists the
file path to the artifacts in the matrix, as well as the focused display, applied filters, and highlighting.

Create a MATLAB variable that contains the table data by clicking Export > Create MATLAB
Variable. The variable slrtmxData is created in the base MATLAB workspace. If you have an
existing variable slrtmxData in your workspace, the variable is overwritten.

The exported MATLAB variable is not interactive, but has the functionality of a MATLAB table. See
“Tables”. Create the view that you want to export by focusing the display or applying filters. The
MATLAB table includes items in collapsed hierarchies, but does not include highlighting.

Work Programmatically with a Traceability Matrix
In addition to the Traceability Matrix window, you can also create a traceability matrix by using APIs.
Use slreq.getTraceabilityMatrixOptions to create a structure and set the leftArtifacts
and topArtifacts fields by providing a cell array containing artifact lists. Then use
slreq.generateTraceabilityMatrix with the structure as an input argument to generate the
matrix with the specified artifacts. See “Programmatically Generate a Traceability Matrix”.

See Also
slreq.generateTraceabilityMatrix | slreq.getTraceabilityMatrixOptions

Related Examples
• “Make Requirements Fully Traceable with a Traceability Matrix” on page 2-70
• “Programmatically Generate a Traceability Matrix”

More About
• “Link Blocks and Requirements” on page 2-2
• “Define Custom Requirement and Link Types” on page 2-40
• “Requirement Links” on page 2-32
• “Track Changes to Requirement Links” on page 4-3

 Track Requirement Links with a Traceability Matrix

2-17

Visualize Links with a Traceability Diagram
You can visualize the traceability structure of requirements and other Model-Based Design items by
using the Traceability Diagram. A traceability diagram graphically displays the links between an
originating Model-Based Design item, such as a requirement, and the items linked to it, such as other
requirements or Simulink blocks. For more information, see Linkable Items on page 2-32.

In the diagram, items are nodes and links are edges. The item that you generate the diagram from is
the starting node. You can also generate an artifact-level diagram, where the artifacts, such as
requirement sets or Simulink models, are nodes, and the link sets are edges.

A traceability diagram displays all items linked to the starting node, including all upstream nodes and
downstream nodes. If an upstream node has further upstream links, the diagram also displays those
linked items. Similarly, the diagram displays further downstream linked items for downstream nodes.

Whether nodes are upstream or downstream is determined by the impact direction, which describes
how changes propagate between nodes. An upstream node impacts the starting node. A downstream
node is impacted by the starting node. The impact direction is determined by the link type on page 2-
33. For more information, see “Impact Direction” on page 2-21.

You can use a traceability diagram to assess requirements allocation and change propagation
between linked Model-Based Design items. For more information, see “Assess Allocation and Impact”
on page 2-27.

Generate a Traceability Diagram
You can create a traceability diagram from these objects:

• slreq.Requirement, slreq.Reference, or slreq.Justification
• slreq.ReqSet
• slreq.Link
• slreq.LinkSet

If you create a traceability diagram from a link, then the link source item is the starting node.
Similarly, if you create a traceability diagram from a link set, then the link set artifact is the starting
node.

To create a traceability diagram:

• In the Requirements Editor, select the item and click Traceability Diagram.
• In the Requirements Editor, right-click the item and select View Traceability Diagram.
• At the MATLAB command line, use slreq.generateTraceabilityDiagram.

You can create a new diagram from a node in an existing diagram by right-clicking the node and
selecting View Traceability Diagram.

Types of Traceability Diagrams

When you create a traceability diagram from a requirement, referenced requirement, justification, or
link, the diagram is an item-level diagram. The nodes represent Model-Based Design items, such as
requirements and Simulink blocks. The edges represent links between those items.

2 Requirements Traceability and Consistency

2-18

When you create a traceability diagram from a requirement set or link set, the diagram is an artifact-
level diagram. The nodes represent Model-Based Design artifacts like requirement sets, Simulink
models, and Simulink Test files. The edges represent links between items within the artifacts, such as
links between requirements, Simulink blocks, and Simulink test cases.

 Visualize Links with a Traceability Diagram

2-19

Elements of a Diagram

Diagrams consist of nodes and edges.

Nodes represent Model-Based Design items or artifacts. The starting node of the diagram has blue
text and a surrounding glow.

The node border color indicates the artifact that the node belongs to, or the artifact domain, such as
Simulink Requirements files, or Simulink models and libraries. The Legend pane displays the
artifacts, the artifact colors, and the domain that each artifact belongs to.

For item-level diagrams, the warning icon () indicates an unavailable item. If the item is
unavailable because it is not loaded, double-click the node. If the item is unavailable because the
specified ID does not exist, then you must resolve the link. For more information, see “Resolve Links”
on page 2-36.

Edges are arrows represent links between Model-Based Design items or items within artifacts. The
label of the edge is the link type on page 2-33 for item-level diagrams, and also includes the number
of links of each type for artifact-level diagrams.

2 Requirements Traceability and Consistency

2-20

If a link has a change issue, the corresponding edge is a dashed red line. For more information about
change issues, see “Track Changes to Requirement Links” on page 4-3.

The edge arrow points in the link direction – from the source node to the destination node. The link
direction is not necessarily the same as the impact direction. For more information, see “Impact
Direction” on page 2-21 and “Link Types” on page 2-33.

Impact Direction

The link type relationship between the starting node and a link determines the impact direction of
that edge. For more information, see “Link Types” on page 2-33. Upstream nodes impact the
starting node, while downstream nodes are impacted by the starting node.

This table summarizes the relationship between the link type and the impact direction.

Link Type Upstream Relationship Downstream Impact direction
Relate Source Related to Destination Same as link

direction
Implement Destination Implemented by Source Opposite of link

direction

 Visualize Links with a Traceability Diagram

2-21

Link Type Upstream Relationship Downstream Impact direction
Verify Destination Verified by Source Opposite of link

direction
Derive Source Derives Destination Same as link

direction
Refine Destination Refined by Source Opposite of link

direction
Confirm Source Confirmed by Destination Same as link

direction

For example, a link with the Implement type connects two nodes, then the destination is upstream
and the source is downstream. The impact direction is opposite of the link direction because the
impact is from the destination to the source.

You can use the impact direction to assess how changes propagate upstream and downstream. You
can also use impact direction to assess requirements allocation. For more information, see “Assess
Allocation and Impact” on page 2-27.

In an artifact-level diagram, if all links between items in two artifacts have the same type, then the
link type defines the impact direction. If the links between items in two artifacts have different types,
but all types define the impact direction the same way, they use the impact direction defined in the
table. For example, both Derive and Relate link types define the source as upstream.

If the links between items in two artifacts have different types and the types define different impact
directions, then the artifact containing the link source is defined as upstream, and the artifact
containing the link destination is defined as downstream.

Use the Traceability Diagram
When you select a node, the diagram highlights the edges and nodes connected to the selected node.

2 Requirements Traceability and Consistency

2-22

Navigate from Node or Edge to Artifact

You can navigate from a node or edge to the corresponding item, artifact, link, or link set when you
double-click the node or edge. You can also right-click the node or edge and select Navigate to. The
node or edge opens in its respective artifact or domain.

Refresh the Diagram

If you create a traceability diagram and then make a change in the background to any of the items,
artifacts, or links, you must refresh the diagram to apply the changes to the diagram. If you load an
unloaded item or resolve a link, you must refresh the diagram to remove the warning icon (). For
more information, see “Elements of a Diagram” on page 2-20.

Click Analyze to refresh the diagram.

Modify the Traceability Diagram View
You can modify the view in the Traceability Diagram by using the toolstrip or the Legend and
Overview panes.

 Visualize Links with a Traceability Diagram

2-23

Layout and Navigation

By default, the diagram is laid out vertically. You can change the layout by selecting Horizontal.

When you create a diagram, it fits to the work area. You can zoom in by clicking Zoom In or by
pressing Ctrl+= or zoom out by clicking Zoom Out or pressing Ctrl+-. You can also use the scroll
wheel to zoom. You can fit the diagram to the work area again by clicking Fit to View or pressing
Space.

You can also navigate by using the Overview pane, which displays a map of the diagram. The map
shows which area of the diagram you are currently viewing.

You can navigate to another area by clicking or dragging in the map. You can also navigate to another
area of the diagram by pressing Ctrl and using a scroll wheel, or clicking and dragging with a scroll
wheel.

Filter Nodes by Impact Direction

You can filter nodes from the diagram by impact direction. To only view nodes that are upstream from
the starting node, click Upstream. To only view nodes that are downstream from the starting node,
click Downstream.

To clear the upstream or downstream filter, click Show All Traceabilities.

2 Requirements Traceability and Consistency

2-24

Filter Nodes by Artifact or Domain

You can use the Legend pane to filter nodes from the diagram by artifact or artifact domain. To filter
nodes from a particular artifact, clear the selection for that artifact. To filter all nodes from a domain,
clear the selection for that domain.

Note For an artifact-level diagram, you can only filter by artifact domain.

Hide Edge Labels

By default, the diagram displays the link type as the label for each edge. You can hide the edge labels
by right-clicking an edge or the white space in the diagram and clearing Always show labels on
edges. After you clear the selection, the edge labels only appear when you select or point to an edge.

Export the Diagram
You can export the traceability diagram to a MATLAB digraph object. To export the diagram, in the
Traceability Diagram window, select Export > Export to MATLAB Variable. You can use digraph
object functions to work with the object and plot to visualize it.

You can use this code to create a figure that looks similar to the traceability diagram. In this code, the
variable graph_for_CancelSwitchDetection is the name of the exported MATLAB digraph
object.

dg = graph_for_CancelSwitchDetection;

h = plot(dg,NodeLabel=dg.Nodes.Name,EdgeLabel=dg.Edges.Labels, ...
 YData=cell2mat(dg.Nodes.LayerDepths), ...
 XData=cell2mat(dg.Nodes.IndexInCurrentLayer), ...
 interpreter="none",hittest="on",ArrowSize=15,MarkerSize=10);

nodeList = dg.Nodes.Name;

for index = 1:length(nodeList)
 cNode = nodeList(index);
 if (dg.Nodes.isStartingNode{index})
 h.highlight(cNode,NodeColor="b");

 Visualize Links with a Traceability Diagram

2-25

 end
end

edgeList = dg.Edges.EndNodes;

for index = 1:length(edgeList)
 if (dg.Edges.HasChanged{index})
 h.highlight(edgeList{index,1},edgeList{index,2},EdgeColor="r");
 end
end

See Also
digraph | slreq.generateTraceabilityDiagram

More About
• “Assess Allocation and Impact” on page 2-27
• “Track Requirement Links with a Traceability Matrix” on page 2-5
• “Track Changes to Requirement Links” on page 4-3
• “Perform an Impact Analysis”
• “Trace Artifacts to Units for Model Testing Analysis” (Simulink Check)

2 Requirements Traceability and Consistency

2-26

Assess Allocation and Impact
You can use the Traceability Diagram window to visualize links between Model-Based Design items.
The diagram originates from a starting node that corresponds to an item and displays links, also
called edges, from the starting node to other nodes that correspond to other linkable items on page 2-
32. For more information, see “Visualize Links with a Traceability Diagram” on page 2-18.

Traceability diagrams also allow you to visually inspect the requirements allocation in a requirement
set, which is a process of decomposing requirements and linking them to design elements and test for
implementation and verification. Requirements allocation allows you to confirm that the design
implements and verifies behavior that is required at a high-level, such as requirements that describe
end-user needs.

You can also use a traceability diagram to visualize indirect links to assess how a change impacts and
propagates between Model-Based Design items, especially when requirements change within a
requirements hierarchy that contains multiple levels.

Assess Requirements Allocation
The process of requirements allocation allows you to confirm that functionality required at the high-
level is implemented and verified by the design and tests, respectively. To allocate a single high-level
requirement, you must:

1 Decompose the high-level requirement into one or more low-level requirements that are more
detailed in order to allow for final implementation and verification. The low-level requirements
should cumulatively capture the functionality required at the high level.

2 Create links between the high-level requirement and the decomposed requirements. This creates
traceability from the high-level required functionality to low-level implementation and
verification.

3 Implement and verify the low-level requirements by linking them to design and test items.

After you allocate a requirement, you can use a traceability diagram to create a diagram from that
requirement and visually inspect the allocation. You can visualize the links to low-level requirements
and to the implementation and verification items, such as Simulink blocks and test cases.

Decomposing Requirements

The first step of requirements allocation is to decompose your high-level requirements. Some
requirements are too abstract and must be decomposed into low-level functional requirements that
can be implemented and verified.

Decomposing high-level requirements into more detailed low-level requirements allows you to
implement the requirements with design components that explicitly carry out the required
functionality. Additionally, you can create tests that only require the part of the system that contains
that component. This component-level implementation and verification helps requirements to remain
implemented and verified when multiple components are integrated into a system.

For example, the “Requirements Definition for a Cruise Control Model” describes a cruise control
system design. The crs_req_func_spec requirement set contains requirements that ensure that
the system meets the functional specifications. The Calculate Target Speed and Throttle
Value requirement is an example of a decomposed, high-level requirement.

 Assess Allocation and Impact

2-27

Linking, Implementing, and Verifying Requirements

In order for a decomposed high-level requirement to be allocated, it must link to the corresponding
low-level requirements. Additionally, each low-level functional requirement must have at least one
outgoing link for implementation and one outgoing link for verification. If you intentionally did not
implement or verify a low-level functional requirement, you can create a link to a justification and add
information about why this requirement is exempt from implementation or verification. For more
information, see “Justify Requirements” on page 3-16.

You must fully allocate your high-level requirements to visualize the design items in the Traceability
Diagram window. For example, the Calculate Target Speed and Throttle Value is
decomposed but it is not linked to its child requirements. The diagram below shows that it only has
one link.

You can use the Requirements Editor, Requirements Perspective, or Traceability Matrix to create
links. For more information, see:

• “Link Blocks and Requirements” on page 2-2
• “Link to Test Cases from Requirements”
• “Track Requirement Links with a Traceability Matrix” on page 2-5

2 Requirements Traceability and Consistency

2-28

Visualizing Requirements Allocation

After you allocate your requirements, you can visualize the allocation by creating a traceability
diagram from the high-level requirement. For more information, see “Generate a Traceability
Diagram” on page 2-18.

For example, the diagram below originates from the Calculate Target Speed and Throttle
Value requirement and shows added links between Calculate Target Speed and Throttle
Value and its child requirements.

Each child requirement has at least one Implement type link to a model element. However, the child
requirements do not have Verify type links to test items or to justifications, so the Calculate
Target Speed and Throttle Value requirement is not considered fully allocated.

Visualize Change Propagation
Simulink Requirements allows you to track changes to requirements. If a linked requirement
changes, the associated link has a change issue. For more information, see “Track Changes to
Requirement Links” on page 4-3.

In the Traceability Diagram, links with change issues are shown as dashed red lines. Because change
issues apply only to the immediate link when you change a linked requirement, you can use the
Traceability Diagram to assess the change propagation for links that have change issues and items
that indirectly link to a changed requirement.

 Assess Allocation and Impact

2-29

Visualize Indirect Links

If you make a change to a requirement, a change issue is only applied to that immediate link.
However, changes may affect other items that are indirectly linked. Indirect links are links between
items that have at least one degree of separation. You can use a traceability diagram to visualize
indirect links.

For example, this diagram shows an indirect link between the Disabling cruise control
requirement and the Enumerated Constant Simulink block:

Assess Change Propagation

Changes can flow from the changed node through several layers of upstream or downstream nodes.
You can use a traceability diagram to visualize how changes propagate through indirect links, and
assess how the changes might affect further upstream or downstream nodes.

For example, the diagram below originates from the Calculate Target Speed and Throttle
Value requirement and shows links to child requirements. A change has been made to the
Calculate Target Speed and Throttle Value requirement. The diagram indicates that four
outgoing links from the Calculate Target Speed and Throttle Value requirement have
change issues.

2 Requirements Traceability and Consistency

2-30

Although the links to the grandchild requirements Throttle Value Computation and Next
Target Speed Computation do not have change issues, the diagram shows that they are indirectly
linked to the changed requirement – Calculate Target Speed and Throttle Value.

You can assess the impact that the change to the Calculate Target Speed and Throttle
Value requirement has on the grandchild requirements by navigating to them in the Requirements
Editor. For more information, see “Navigate from Node or Edge to Artifact” on page 2-23.

See Also
slreq.generateTraceabilityDiagram

More About
• “Visualize Links with a Traceability Diagram” on page 2-18
• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6
• “Track Changes to Requirement Links” on page 4-3

 Assess Allocation and Impact

2-31

Requirement Links
Track how your requirements relate to your model design by using Simulink Requirements to create
links between your requirements and various Simulink model elements, including blocks, Stateflow
objects, Simulink Test test objects, Simulink data dictionary entries, MATLAB code lines, and other
requirements.

Each link has a corresponding slreq.Link object. The link points from a source item to a
destination item.

You can create links to blocks and Stateflow objects from the Simulink Editor by dragging
requirements from the Requirements Browser in the Requirements Perspective View. You can
create links to Simulink Test test objects from the Test Manager or from the Requirements Editor. For
more information on linking Simulink model elements to requirements, see “Link Blocks and
Requirements” and “Link to Test Cases from Requirements”.

Requirement links identify the requirement by the Session Independent Identifier (SID) instead of the
Custom ID, such that the link remains functional if the Custom ID is modified.

Linkable Items
You can create links between these requirements items, model entities, test artifacts, and code:

• Simulink Requirements objects:

• slreq.Requirement objects
• slreq.Reference objects
• slreq.Justification objects

• Simulink entities:

• Blocks
• Subsystems

• Simulink data dictionary entries
• Stateflow objects:

• States
• Charts and subcharts
• Transitions

• System Composer architecture entities:

• Components
• Ports
• Views

• Simulink Test objects:

• Test files
• Test suites
• Test cases

2 Requirements Traceability and Consistency

2-32

• Iterations
• Assessments

• Lines of MATLAB code in:

• MATLAB .m files.
• MATLAB Function blocks. For more information, see “Integrate Basic Algorithms Using

MATLAB Function Block”.
• MATLAB-based Simulink tests. For more information, see “Test Models Using MATLAB-Based

Simulink Tests” (Simulink Test).

You can set external artifacts like URLs as link destinations by creating MATLAB structures. There
are two approaches available:

• Create a link destination structure, then create a link between the requirement and the
destination.

myLinkDest = struct('domain', 'linktype_rmi_url', 'artifact', ...
 'https://www.mathworks.com', 'id', '')

myLinkDest =

 struct with fields:

 domain: 'linktype_rmi_url'
 artifact: 'www.mathworks.com'
 id: ''
slreq.createLink(myReq, myLinkDest);

• Create a requirement links data structure using rmi('createempty'). See rmi.

Link Types
Each link has a type that describes the relationship between the source and destination items. The
link type refers to the slreq.Link object's Type property value.

Each link type has an intended use case. For example, the Implement link type indicates a
relationship between a requirement and a design item that implements the requirement. When you
create a link between two items, Simulink Requirements sets the link type and designates the items
as source or destination depending on the type of artifact that they belong to. For example, if you
create a link between a requirement and a Simulink model element, Simulink Requirements assumes
that the model element implements the requirement. It sets the link type to Implement and
designates the model element as the source and the requirement as the destination.

If there is no assumed link type for a link created between two items, then Simulink Requirements
sets the link type to Relate.

After you create the link, you can edit the link type in the Requirements Editor, the Requirements
Perspective, or at the MATLAB command line. In the Requirements Editor, click Show Links. Select a
link and, in the Details pane, under Properties, select the desired link type from the Type list.

Simulink Requirements provides six built-in link types.

The forward direction indicates how the source relates to the destination. Similarly, the backward
direction indicates how the destination relates to the source.

 Requirement Links

2-33

Type Description Source-to-
Destination
Example

Forward
Direction

Backward
Direction

Relate • General
relationship
between items
for most use
cases

• Bi-directional
link

Requirement to
requirement

The first
requirement is
related to the
second
requirement.

The second
requirement is
related to the first
requirement.

Implement • Specifies the
source item
that
implements the
requirement

• Contributes to
the
implementation
status

For more
information, see
“Review
Requirements
Implementation
Status” on page 3-
2.

Simulink model
element to
requirement

The Simulink
model element
implements the
requirement.

The requirement is
implemented by
the Simulink model
element.

Verify • Specifies which
source item
verifies the
requirement

• Contributes to
the verification
status if the
source item is
one of the
accepted item
types

For more
information, see
“Review
Requirements
Verification Status”
on page 3-6.

Simulink test case
to requirement

The Simulink test
case verifies the
requirement.

The requirement is
verified by the
Simulink test case.

2 Requirements Traceability and Consistency

2-34

Type Description Source-to-
Destination
Example

Forward
Direction

Backward
Direction

Derive Specifies which
source item
derives the
destination item

Imported
referenced
requirement to
requirement

The imported
referenced
requirement
derives the
requirement.

The requirement is
derived from the
imported
referenced
requirement.

Refine Specifies which
source item adds
detail for the
functionality
specified by the
destination item

Low-level
requirement to
high-level
requirement

The low-level
requirement
refines the high-
level requirement.

The high-level
requirement is
refined by the
low-level
requirement.

Confirm • Specifies a
relationship
between a
requirement
and an external
test result
source

• Can contribute
to the
verification
status in
certain cases

For more
information, see
“Include Results
from External
Sources in
Verification Status”
on page 3-27.

Requirement to
external test result

The requirement is
confirmed by the
external test
result.

The external test
result confirms
the requirement.

The Implement and Verify link types describe requirement-to-model and requirement-to-test
relationships. Specify the source and the destination artifacts carefully because these links affect the
implementation status and verification status. For more information, see “Review Requirements
Implementation Status” on page 3-2 and “Review Requirements Verification Status” on page 3-6.

The link type also affects the impact direction in the Traceability Diagram window. For more
information, see “Visualize Links with a Traceability Diagram” on page 2-18.

Custom Link Types

In addition to the built-in types, you can define custom link types. Custom link types must be a
subtype of one of the built-in types. The custom link type inherits some functionality from the built-in
type, including how the link type contributes to the implementation and verification statuses. For
more information, see “Define Custom Requirement and Link Types” on page 2-40.

 Requirement Links

2-35

Review Requirement Links
You can review links in the Requirements Editor or the Requirements Browser. To view links in the
Requirements Editor, click Show Links. To view links in the Requirements Browser, select Links
from the View drop-down menu.

When working in the Simulink Editor, you can review requirement links for individual requirements.
In the Requirements Browser, select Requirements from the View drop-down menu and select a
requirement. The links are displayed in the Property Inspector, under Links.

By default, all the outgoing links from a source artifact are stored in a Link Set file (.slmx). See
“Requirements Link Storage” on page 5-4 for more information on requirements links storage.

When you delete a link, all related data is deleted including associated comments and custom
attributes.

Resolve Links
For a link to be resolved, you must be able to navigate to the source item and to the destination item.
If the source, destination, or both are not available, the link is unresolved. The source or destination
items can be unavailable because:

• The design artifact that contains the source or destination item is not loaded. For example, if you
load a requirement set that has incoming links from a Simulink model, this also loads the link set
that belongs to the model. However, if you do not load the Simulink model, the links are
unresolved because the link sources are not available.

• The design artifact loaded, but the specified ID does not exist. For example, if you delete a linked
requirement, the link becomes unresolved because the stored ID no longer corresponds to a valid
item.

If a link is unresolved because the specified ID does not exist, it is a broken link.

To see the unresolved links, in the Requirements Editor, click Show Links. Unresolved links are

denoted by .

If a link is unresolved because the source or destination is not loaded, you can resolve the link by
loading the file that contains the unloaded source or destination. If a link is broken, you can use the
setSource and setDestination methods to repair the link.

Load Link Information
For artifacts such as requirement sets, Simulink models, data dictionaries, test files, and MATLAB
files, all link information related to the artifacts that are on the MATLAB or Project path are
automatically loaded when that artifact is loaded.

The link information loading can be summarized by the rules as follows:

• Rule 1: Loading an artifact such as requirement sets, Simulink models, data dictionaries, test files,
and MATLAB files, that are on the MATLAB or Project path loads all incoming and outgoing link
sets for that artifact. Each artifact can have one outgoing link set and one or more link sets
containing link information from other artifacts.

2 Requirements Traceability and Consistency

2-36

• Rule 2: If the loaded artifact has outgoing links to a requirement set, then the requirement set is
also loaded along with the link information. This loaded requirement set is also eligible to follow
Rule 1 to further load link information.

The application of these rules can be illustrated using the slreqCCProjectStart project in three
scenarios. Follow these steps:

1 Close all the Simulink models and requirement sets before opening the project.
2 Load the slreqCCProjectStart in the MATLAB:

slreqCCProjectStart
3 Scenario 1:

a Open the model crs_controller.slx:

open_system('crs_controller.slx');
b Open Requirements Editor:

slreq.editor
c The Requirements Editor shows following information:

Link information from outgoing link set crs_controller.slmx is loaded according to Rule
1.

Requirement set crs_req_func_spec.slreqx and link sets crs_req.slmx,
crs_controllerdic.slmx, DriverSWRequest_Tests.slmx, and crs_plant.slmx are
loaded according to Rule 2.

d Close the model and the Requirements Editor.
4 Scenario 2:

a Open the requirement set crs_req_func_spec.slreqx:

slreq.open('crs_req_func_spec.slreqx');
b The Requirements Editor opens and shows following information:

 Requirement Links

2-37

Link sets View

All link sets which contain incoming link information for loaded requirement set are loaded
according to Rule 1.

c Close the Requirements Editor.
5 Scenario 3:

a Open the model crs_plant.slx:

open_system('crs_plant.slx');
b Open Requirements Editor:

slreq.editor
c The Requirements Editor shows following information:

Link information from outgoing link set crs_plant.slmx is loaded according to Rule 1.

Requirement sets crs_req_func_spec.slreqx and crs_req.slreqx and all link sets
which contain incoming link information for these requirements are loaded according to Rule
2.

d Close the model and the Requirements Editor.

Link information is not automatically loaded if you save your links with the model as an embedded
link set. You can also load link information by using the slreq.refreshLinkDependencies
command.

Unload Link Information
Link information is automatically unloaded when you unload all the related artifacts from memory.

2 Requirements Traceability and Consistency

2-38

Delete a Link Set
Link sets are stored in .slmx files. Deleting the .slmx file while the links are loaded in memory may
lead to unexpected behavior.

Note If you want to delete a link set file associated with a Simulink model, ensure that the links are
stored externally. To read more about how to store links externally from a Simulink model, see
“Requirements Link Storage” on page 5-4.

To delete a link set:

1 Locate the .slmx file. By default, when you create a link, it is stored in a link set with the same
name as the artifact that the source item belongs to. The .slmx file is stored in the same
directory as the source artifact.

2 It is best to close all loaded artifacts before deleting a link set. This includes requirement sets,
Simulink Test files, MATLAB code, Simulink data dictionaries, and Simulink, Stateflow or System
Composer models. Manually close all of these artifacts.

3 At the MATLAB command line, clear loaded links by entering:

slreq.clear
4 Delete the .slmx file.

After deleting the link set file, you can re-open artifacts as needed.

See Also
setSource | setDestination | slreq.refreshLinkDependencies

More About
• “Track Requirement Links with a Traceability Matrix” on page 2-5
• “Customize Links with Custom Attributes” on page 2-43
• “Define Custom Requirement and Link Types” on page 2-40

 Requirement Links

2-39

Define Custom Requirement and Link Types
All requirement and link objects in Simulink Requirements have a Type property. The Type property
can be one of the built-in requirement types on page 1-6 or link types on page 2-33 or a custom
requirement or link type. Custom requirement and link types must be a subtype of one of the built-in
types and inherit functionality from that type.

Create and Register Custom Requirement and Link Types
To create a custom requirement or link type:

1 Create an sl_customization.m file in the current working folder. In MATLAB, in the Home
tab, click New Script. Copy and paste this code and save the file as sl_customization.m.

function sl_customization(cm)
 cObj = cm.SimulinkRequirementsCustomizer;
end

2 Add definitions to the customization file to create custom requirement types or custom link types.

Note Custom link types do not inherit the link direction from the built-in link type. When you
create subtypes for the Verify or Confirm built-in types, use the same link direction as the
built-in type to ensure that the test item contributes to the verification status. For more
information, see “Link Types” on page 2-33.

For example, this code creates a custom requirement type called Heading that is a subtype of
the built-in requirement type Container. It also creates two custom link types called Satisfy
and Solve that are subtypes of the built-in link types Verify and Implement, respectively. For
more information, see “Requirement Types” on page 1-6 and “Link Types” on page 2-33.

function sl_customization(cm)
 cObj = cm.SimulinkRequirementsCustomizer;
 cObj.addCustomRequirementType('Heading',slreq.custom.RequirementType.Container,...
 'Headings for functional requirements');
 cObj.addCustomLinkType('Satisfy', slreq.custom.LinkType.Verify,'Satisfies', ...
 'Satisfied by','Links from verification objects to requirements');
 cObj.addCustomLinkType('Solve', slreq.custom.LinkType.Implement,'Solves', ...
 'Solved by','Links from implementation objects to requirements');
end

3 Register the customization. At the MATLAB command line, enter:

sl_refresh_customizations

For more information, see “Register Customizations with Simulink”.

Inherited Functionality from the Built-In Type
Custom requirement and link types inherit some functionality from the built-in type they are a
subtype of, including how they contribute to the implementation and verification status and the
direction and impact of links.

Custom Requirement Type Contribution to Implementation and Verification Status

Only the functional built-in requirement type contributes to the implementation and verification
status. When you create a requirement type that is a subtype of Functional, it also contributes to

2 Requirements Traceability and Consistency

2-40

the implementation and verification status. Custom requirement types that are subtypes of the other
built-in types do not contribute to those statuses. For more information, see “Review Requirements
Implementation Status” on page 3-2 and “Review Requirements Verification Status” on page 3-6.

In the example code above, the Heading custom requirement type does not contribute to the
implementation or verification statuses because it is a subtype of the built-in Container requirement
type.

Custom Link Type Contribution to Implementation and Verification Status

To implement a functional requirement, you must link the requirement to a Model-Based Design item
by using a link with the link type Implement. For more information, see “Review Requirements
Implementation Status” on page 3-2.

Similarly, to verify a functional requirement, you must link the requirement to a supported test item
with the link type Verify or, if it is linked to an external test result, the link type Confirm. For more
information, see “Review Requirements Verification Status” on page 3-6 and “Include Results from
External Sources in Verification Status” on page 3-27.

When you create a custom link type that is a subtype of Implement, Verify, or Confirm, the
custom link type contributes to the implementation or verification status.

In the example code above, the Satisfy and Solve custom link types contribute to the
implementation and verification statuses for Functional requirements because they are subtypes of
the Verify and Implement link types, respectively.

Custom Link Type Impact Direction

Impact direction describes how changes propagate between nodes in a traceability diagram. For
more information, see the “Impact Direction” on page 2-21 section of “Visualize Links with a
Traceability Diagram” on page 2-18. Custom link types inherit the impact direction from the built-in
type that they are a subtype of. However, because custom link types do not inherit the link direction,
use the same link direction as the built-in types for consistency in the traceability diagram. For more
information, see the table under “Link Types” on page 2-33.

Set the Type in the Requirements Editor
You can select the custom requirement or link type from the Requirements Editor. To set a
requirement to a custom requirement type, click Show Requirements and select a requirement. In
the Details pane, under Properties, select the custom requirement type from the Type drop-down
list.

To set a link to a custom link type, click Show Links and select a link. In the Details pane, under
Properties, select the custom link type from the Type drop-down list.

 Define Custom Requirement and Link Types

2-41

See Also

More About
• “Requirement Types” on page 1-6
• “Link Types” on page 2-33
• “Map SpecObjectTypes to Requirement Types” on page 1-23

2 Requirements Traceability and Consistency

2-42

Customize Links with Custom Attributes
In this section...
“Define Custom Attributes for Link Sets” on page 2-43
“Set Custom Attribute Values for Links” on page 2-44
“Edit Custom Attributes” on page 2-45

When you create a link set using Simulink Requirements, you can create custom attributes that apply
to the links contained in the link set. Custom attributes extend the set of properties associated with
your links.

Define Custom Attributes for Link Sets
To define a custom attribute for a link set:

1 Open the Requirements Editor. At the MATLAB command prompt, enter:

slreq.editor
2 Open a requirement set that contains requirement links, or create a new requirement set and

create requirement links. For more information, see “Requirement Links” on page 2-32.
3 Click Show Links.
4 Select the link set.
5 In the Details pane, under Custom Attribute Registries, click Add to add a custom attribute to

the link set.
6 The Custom Attribute Registration dialog box appears. Enter the name of your custom

attribute in the Name field. Select the type from the Type drop-down menu. Enter a description
of the custom attribute in the Description field.

 Customize Links with Custom Attributes

2-43

Custom Attribute Types

There are four custom attribute types:

• Edit: Text box that accepts a character array. There is no default value.
• Checkbox: Single check box that can be either checked or unchecked. The default value is

unchecked.
• Combobox: Drop-down menu with user-defined options. Unset is always the first option in the

drop-down menu and the default attribute value.
• DateTime: Text box that only accepts a datetime array. There is no default value. See datetime

for more information on datetime arrays.

Set Custom Attribute Values for Links
After you define custom attributes for a link set, you can set the custom attribute value for each link.
Select the link in the Requirements Editor. In the Details pane, under Custom Attributes, enter the
desired value in the field.

2 Requirements Traceability and Consistency

2-44

Note You can only set the custom attribute value for one link at a time.

If you do not define a value for Checkbox or Combobox type custom attributes for a link, the value
will be set to the default. For Checkbox custom attributes, the default value is defined for the link set
in the Details pane, under Custom Attribute Registries. For Combobox custom attributes, the
default value is Unset.

Edit Custom Attributes
After you define a custom attribute for a link set, you can make limited changes to the custom
attribute. Select the link set in the Requirements Editor. In the Details pane, under Custom
Attribute Registries, select the custom attribute you want to edit and click Edit.

For custom attributes of any type, you can edit the name and description. For Combobox custom
attributes, you can also edit the drop-down menu options. You can edit the value of each option in the
drop-down menu (excluding Unset), or add and remove options. If you edit the value of an option or
remove an option, then any links that had been set to that option will be reset to the default value,
Unset.

After you set the custom attribute value for a link, you can change the value at any time by selecting
the link in the Requirements Editor and setting the updated value in the Details pane, under Custom
Attributes.

See Also

Related Examples
• “Manage Custom Attributes for Links by Using the Simulink® Requirements™ API” on page 2-

65

More About
• “Customize Requirements with Custom Attributes” on page 1-48

 Customize Links with Custom Attributes

2-45

Requirements Consistency Checks

Check Requirements Consistency in Model Advisor
• “Identify requirement links with missing documents” on page 2-46
• “Identify requirement links that specify invalid locations within documents” on page 2-46
• “Identify selection-based links having description fields that do not match their requirements

document text” on page 2-47
• “Identify requirement links with path type inconsistent with preferences” on page 2-48
• “Identify IBM Rational DOORS objects linked from Simulink that do not link to Simulink”

on page 2-49

You can check requirements consistency using the Model Advisor.

Identify requirement links with missing documents

Check ID: mathworks.req.Documents

Verify that requirements link to existing documents.

Description

You used the Requirements Management Interface (RMI) to associate a design requirements
document with a part of your model design and the interface cannot find the specified document.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The requirements document associated with a
part of your model design is not accessible at the
specified location.

Open the Requirements dialog box and fix the
path name of the requirements document or
move the document to the specified location.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

Identify requirement links that specify invalid locations within documents

Check ID: mathworks.req.Identifiers

Verify that requirements link to valid locations (e.g., bookmarks, line numbers, anchors) within
documents.

2 Requirements Traceability and Consistency

2-46

Description

You used the Requirements Management Interface (RMI) to associate a location in a design
requirements document (a bookmark, line number, or anchor) with a part of your model design and
the interface cannot find the specified location in the specified document.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The location in the requirements document
associated with a part of your model design is not
accessible.

Open the Requirements dialog box and fix the
location reference within the requirements
document.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to run this check, those
applications must be closed on your computer.

Identify selection-based links having description fields that do not match their
requirements document text

Check ID: mathworks.req.Labels

Verify that descriptions of selection-based links use the same text found in their requirements
documents.

Description

You used selection-based linking of the Requirements Management Interface (RMI) to label
requirements in the model's Requirements menu with text that appears in the corresponding
requirements document. This check helps you manage traceability by identifying requirement
descriptions in the menu that are not synchronized with text in the documents.

Available with Simulink Requirements.

 Requirements Consistency Checks

2-47

Results and Recommended Actions

Condition Recommended Action
Selection-based links have descriptions that differ
from their corresponding selections in the
requirements documents.

If the difference reflects a change in the
requirements document, click Update in the
Model Advisor results to replace the current
description in the selection-based link with the
text from the requirements document (the
external description). Alternatively, you can right-
click the object in the model window, select
Edit/Add Links from the Requirements menu,
and use the Requirements dialog box that
appears to synchronize the text.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to run this check, those
applications must be closed on your computer.

Identify requirement links with path type inconsistent with preferences

Check ID: mathworks.req.Paths

Check that requirement paths are of the type selected in the preferences.

Description

You are using the Requirements Management Interface (RMI) and the paths specifying the location of
your requirements documents differ from the file reference type set as your preference.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The paths indicating the location of
requirements documents use a file reference
type that differs from the preference specified
in the Requirements Settings dialog box, on
the Selection Linking tab.

Change the preferred document file reference type
or the specified paths by doing one of the following:

• Click Fix to change the current path to the valid
path.

• In the Apps tab, click Requirements Viewer. In
the Requirements Viewer tab, click Link
Settings.

Select the Selection Linking tab, and change
the value for the Document file reference
option.

2 Requirements Traceability and Consistency

2-48

Linux Check for Absolute Paths

On Linux systems, this check is named Identify requirement links with absolute path type. The
check reports warnings for requirements links that use an absolute path.

The recommended action is:

1 Right-click the model object and select Requirements > Edit/Add Links.
2 Modify the path in the Document field to use a path relative to the current working folder or the

model location.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Identify IBM Rational DOORS objects linked from Simulink that do not link to Simulink

Identify IBM Rational DOORS objects that are targets of Simulink-to-DOORS requirements
traceability links, but that have no corresponding DOORS-to-Simulink requirements traceability links.

Description

You have Simulink-to-DOORS links that do not have a corresponding link from DOORS to Simulink.
You must be logged in to the IBM Rational DOORS Client to run this check.

Available with Simulink Requirements.

Results and Recommended Actions

The Requirements Management Interface (RMI) examines Simulink-to-DOORS links to determine the
presence of a corresponding return link. The RMI lists DOORS objects that do not have a return link
to a Simulink object. For such objects, create corresponding DOORS-to-Simulink links:

1 Click the Fix All hyperlink in the RMI report to insert required links into the DOORS client for
the list of missing requirements links. You can also create individual links by navigating to each
DOORS item and creating a link to the Simulink object.

2 Re-run the link check.

 Requirements Consistency Checks

2-49

Manage Navigation Backlinks in External Requirements
Documents

A backlink is a navigation link in an external document that allows you to navigate from a
requirement to the linked item in MATLAB or Simulink. A backlink either has a corresponding direct
link that points from the item in MATLAB or Simulink to the external requirement, or matches a link
that points from an item in MATLAB or Simulink to an imported referenced requirement, which is an
slreq.Reference object that serves as a proxy object for the external requirement. See
“Differences Between Importing and Direct Linking” on page 1-10.

When you create a direct link from an item in MATLAB or Simulink to a requirement in an external
document, you can insert a backlink. You cannot insert a backlink when you create a link from an
item in MATLAB or Simulink to an imported referenced requirement but you can insert one after you
create the link. You can also remove backlinks from an external document if the original link was
removed.

You can insert backlinks in:

• Microsoft Word documents
• Microsoft Excel spreadsheets
• IBM Rational DOORS modules
• IBM DOORS Next projects

Insert Backlinks in External Requirements Documents
When you create a link from an item in MATLAB or Simulink to an imported referenced requirement
or a requirement in an external document, Simulink Requirements creates a link as an slreq.Link
object. In some cases, you can choose to insert a backlink in the external document when you create
the direct link.

To manually insert or remove backlinks for your requirements:

1 Open the Requirements Editor. At the MATLAB command prompt, enter:

slreq.editor
2 In the Requirements Editor, click Show Links to view the loaded link sets.
3 Select the link set that contains the links that you want to use to insert backlinks or to remove

stale backlinks. Right-click the link set and select Update Backlinks.
4 A dialog box displays the number of links checked and the number of backlinks added and

removed. Click OK.

Note The backlinks update process does not remove backlinks in IBM DOORS Next. Remove
unwanted backlinks in DOORS Next in the DOORS Next interface.

See Also

More About
• “Navigate to Requirements in Microsoft Office Documents from Simulink” on page 6-10

2 Requirements Traceability and Consistency

2-50

• “Link to Requirements in Microsoft Word Documents” on page 6-2
• “Link to Requirements in Excel Workbooks” on page 6-7
• “Link and Trace Requirements with IBM DOORS Next” on page 7-26

 Manage Navigation Backlinks in External Requirements Documents

2-51

Use Command-line API to Update or Repair Requirements Links
This example covers a set of standard situations when links between design artifacts and
requirements become stale after one or more artifacts are moved or renamed. Rather then deleting
broken links and creating new ones, we want to update existing links so that creation/modification
history and other properties (description, keywords, comments,..) are preserved. Use of the following
APIs is demonstrated:

• slreq.find to get hold of Simulink Requirements® entries and links
• find to locate the wanted entry in a given ReqSet
• getLinks to query all outgoing Links in LinkSet
• source brief information about link source
• destination brief information about link destination
• slreq.Link for "as stored" target info, which is different from "as resolved"

Link.destination()
• slreq.LinkSet to update link destinations when target document moved
• slreq.ReqSet to update previously imported set when source document moved
• updateFromDocument to update previously imported References from updated document
• slreq.LinkSet to convert existing "direct links" to "reference links"
• slreq.show used to view either the source or the destination end of a given slreq.Link

In a few places we also use the legacy rmi APIs that are inherited from Requirements Management
Interface (RMI) part of the retired SLVnV Product.

Example Project Files

Before you begin, ensure a clean initial state by running slreq.clear command. Then type
slreqCCProjectStart to open the Cruise Control Project example. This will unzip a collection of
linked artifact files into a new subfolder under your MATLAB/Projects folder.

slreq.clear();
slreqCCProjectStart();

Simulink Model Linked to Requirements

We will focus on a small part of this Project's Dependency Graph: open the crs_plant.slx Simulink
model, that has several links to an external Microsoft® Word document crs_reqs.docx.

open_system('crs_plant');

2 Requirements Traceability and Consistency

2-52

Navigate one of the links to open the linked document.

rmi('view', 'crs_plant/status', 1);

 Use Command-line API to Update or Repair Requirements Links

2-53

Word document opens to the corresponding section:

2 Requirements Traceability and Consistency

2-54

Here is how to use command-line APIs and check for links from crs_plant.slx to crs_reqs.docx.

linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant');
links = linkSet.getLinks();
disp('Original Links to Word document:');

Original Links to Word document:

for i = 1:numel(links)
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 source = links(i).source;
 disp([' found link from ' strrep(getfullname([bdroot source.id]),newline,'') ...
 ' to crs_req.docx']);
 end
end

 found link from crs_plant/Vehicle1/vehiclespeed to crs_req.docx
 found link from crs_plant/throttDrv to crs_req.docx
 found link from crs_plant/status to crs_req.docx
 found link from crs_plant/throttleCC to crs_req.docx

Navigation of Direct Links in the Presence of Imported References

Open the Simulink Requirements Editor by entering slreq.editor at the MATLAB command line.
You will see two Requirement Sets loaded: crs_req.slreqx and crs_req_func_spec.slreqx.
The first Requirement Set is a collection of references imported from crs_req.docx, and the second
was manually created in the Simulink Requirements Editor. If you now close the Word document and
navigate the same link from crs_plant/status Inport block, the corresponding imported reference
is highlighted in Requirements Editor, because navigation action finds the matching reference in a
loaded imported Requirement Set.

 Use Command-line API to Update or Repair Requirements Links

2-55

You can still use the Show in document button to see the linked Requirement in the context of
original document.

slreq.editor();
rmidotnet.MSWord.application('kill');
rmi('view', 'crs_plant/status', 1);

Use Case 1: Batch-update Links after Document Renamed

Suppose that an updated version of the requirements document is received, named
crs_req_v2.docx. We now want the links in crs_plant.slx to target the corresponding sections
of the updated document. For the purpose of this example, we will make a copy of the original
document in same folder with a modified name. We then use slreq.LinkSet API to batch-update all
links in a given LinkSet to connect with the newer copy of the document:

copyfile(fullfile(pwd, 'documents/crs_req.docx'), fullfile(pwd, 'documents/crs_req_v2.docx'));
linkSet.updateDocUri('crs_req.docx', 'crs_req_v2.docx');

Verify the Update of Matching Links

Now we can navigate the same link and confirm that the appropriate version of the external
document opens. If we iterate all links as before, this confirms that all 4 links updated as intended:

2 Requirements Traceability and Consistency

2-56

rmi('view', 'crs_plant/status', 1); % updated document opens
links = linkSet.getLinks();
disp('Links to Word document after update:');

Links to Word document after update:

for i = 1:numel(links)
 source = links(i).source;
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 warning(['link from ' source.id ' still points to crs_req.docx']); % should not happen
 elseif contains(linkTarget.artifact, 'crs_req_v2.docx')
 disp([' found link from ' strrep(getfullname([bdroot source.id]),newline,' ')...
 ' to crs_req_v2.docx']);
 end
end

 found link from crs_plant/Vehicle1/vehicle speed to crs_req_v2.docx
 found link from crs_plant/throttDrv to crs_req_v2.docx
 found link from crs_plant/status to crs_req_v2.docx
 found link from crs_plant/throttleCC to crs_req_v2.docx

Navigate to Imported References After Updating Links

As demonstrated above, when imported references are available in Requirements Editor, navigating a
link will select the matching reference object. However, we have just updated links for a new version
of the document crs_req_v2.docx, and there are no imported references for this document.
Navigation from Simulink block in the presence of Requirements Editor brings you directly to the
external Word document.

To avoid this inconsistency we need to update the previously imported references for association with
the updated document name. We use the slreq.ReqSet API to accomplish this task. Additionally,

 Use Command-line API to Update or Repair Requirements Links

2-57

because the updated document may have modified Requirements, we must use
updateFromDocument API to pull-in the updates for reference items stored on Simulink
Requirements side. After this is done, navigating from Simulink model will locate the matching
imported reference.

Find the Requirement Set with imported references. Update the source file location and find the top-
level Import node.

reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req');
reqSet.updateSrcFileLocation('crs_req.docx', 'crs_req_v2.docx');
importNode = reqSet.find('CustomId', 'crs_req_v2');

Update the imported references from the source file. Close Microsoft Word. Then, navigate to the
updated reference in the Requirements Editor.

importNode.updateFromDocument();
rmidotnet.MSWord.application('kill');
rmi('view', 'crs_plant/status', 1);

Cleanup After Use Case 1

Discard link data changes to avoid prompts on Project close. Close the project (also cleans-up
MATLAB path changes). Close Microsoft Word.

2 Requirements Traceability and Consistency

2-58

slreq.clear();
prj = simulinkproject(); prj.close();
rmidotnet.MSWord.application('kill');

Use Case 2: Batch-update Links to Fully Rely on Imported References

As demonstrated in Use Case 1 above, additional efforts are required to maintain "direct links" to
external documents when documents are moved or renamed. A better workflow is to convert the
existing "direct links" into "reference links", which are links that point to the imported References
in *.slreqx files and no longer duplicate information about the location or name of the original
document. When using this option, the external source document association is stored only in the
Requirement Set that hosts the imported References.

To demonstrate this workflow, restart from the same initial point by reopening the “Requirements
Definition for a Cruise Control Model” in a new subfolder. Copy the Simulink model to your directory
and open it.

slreqCCProjectStart();
copyfile(fullfile(pwd, 'documents/crs_req.docx'), fullfile(pwd, 'documents/crs_req_v2.docx'));
open_system('crs_plant');

Find the crs_plant link set and crs_req requirement set with imported References.

linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant');
reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req');

We then use slreq.LinkSet API to update all the direct links in crs_plant.slmx. Then create an
array of all the links in the link set.

linkSet.redirectLinksToImportedReqs(reqSet);
links = linkSet.getLinks();

After updating the LinkSet in this way, loop over all the links to confirm the absence of "direct" links
to crs_req.docx file.

disp('Check for links to original external document:');

Check for links to original external document:

counter = 0;
for i = 1:numel(links)
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 source = links(i).source;
 warning(['link from ' source.id ' still points to crs_req.docx']);
 counter = counter + 1;
 end
end
disp([' Total ' num2str(counter) ' links to external document']);

 Total 0 links to external document

Navigate from the Simulink model to the updated reference.

rmi('view', 'crs_plant/status', 1);

Links to References and External Document Rename

Now, when all links point to imported References and not to the external document, traceability data
remains consistent after document rename, as long as the Import node is updated for the new

 Use Command-line API to Update or Repair Requirements Links

2-59

external document name. As in the Use Case 1, we will pretend there is an updated version of the
external requirements document, by resaving our Word document with a new name. We then perform
the required update for the Import node by using the same APIs as before. Now, because the links
rely on imported References, and do not store information about imported document, navigation from
Simulink model brings us to the updated reference, same as after performing all the steps of Use
Case 1.

The Reference is now associated with the updated external document, [Show in document] button
opens the updated (renamed) document, and no further adjustment on the LinkSet side is required.

Find the Requirement Set with imported references. Update the source file location and find the top-
level Import node.

reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req');
reqSet.updateSrcFileLocation('crs_req.docx', 'crs_req_v2.docx');
importNode = reqSet.find('CustomId', 'crs_req_v2');

Update the imported references from the source file. Then, navigate to the updated reference in the
Requirements Editor.

importNode.updateFromDocument();

rmi('view', 'crs_plant/status', 1);

2 Requirements Traceability and Consistency

2-60

Cleanup After Use Case 2

Discard link data changes to avoid prompts on Project close. Close the project (also cleans-up
MATLAB path changes). Close Microsoft Word.

slreq.clear();
prj = simulinkproject(); prj.close();
rmidotnet.MSWord.application('kill');

Use Case 3: Moving Linked Artifacts to a New Project

Now suppose that we are branching an existing project with linked artifacts, and we need to create a
new set of renamed artifacts with all the traceability links as in the original Project. As before, we will
extract the Cruise Control Project from “Requirements Definition for a Cruise Control Model” into a
new subfolder, and convert the "direct links" to "reference links", as we have done in Use Case 2
above. We then go ahead and create "new versions" of the linked artifacts by resaving each one with
the _v2. name.

After creating renamed copies of Simulink model, the imported external document, and the
Requirement Set with the imported Requirements, there is one problem: renamed model is linked to
the references in the original Requirement set, not in the renamed Requirement set. In the Details
pane, under Links, the links appear unresolved because the original model is not loaded.

 Use Command-line API to Update or Repair Requirements Links

2-61

Open the Cruise Control Project and open the crs_plant model. Find the link set for crs_plant
and the requirement set crs_req.

slreqCCProjectStart();
open_system('models/crs_plant.slx');
linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant');
reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req');

Convert the direct links to reference links. Create renamed copies of the files and save them.

linkSet.redirectLinksToImportedReqs(reqSet);
mkdir(fullfile(pwd, 'copied'));
save_system('crs_plant', fullfile(pwd, 'copied/crs_plant_v2.slx'));
reqSet.save(fullfile(pwd, 'copied/crs_req_v2.slreqx'));
copyfile('documents/crs_req.docx', 'copied/crs_req_v2.docx');

Associate the renamed requirement set with the renamed document. Find the top level Import node.

reqSet.updateSrcFileLocation('crs_req.docx', fullfile(pwd, 'copied/crs_req_v2.docx'));
importNode = reqSet.find('CustomId', 'crs_req_v2');

2 Requirements Traceability and Consistency

2-62

Ensure the contents in the renamed requirement set match the contents of the renamed document by
updating the imported References. Navigate from the renamed Simulink model to the item in the
renamed requirement set. The old item in the original requirement set is highlighted, which is
incorrect.

importNode.updateFromDocument();

rmi('view', 'crs_plant_v2/status', 1);

Update Links in Renamed Source to Use the Renamed Destination as the Target

Similarly to Use Case 1, we can use LinkSet.updateDocUri(OLD, NEW) API to update links in
crs_plant_v2.slmx to use the renamed Requirement Set crs_req_v2.slreqx as the link target,
instead of the original crs_req.slreqx. Once this is done, navigate again from the block in the
renamed model. The requirement in the renamed Requirement Set is selected, and the links in the
Details pane under Links at bottom-right are resolved.

 Use Command-line API to Update or Repair Requirements Links

2-63

Find the link set for the new copy of the model, crs_plant_v2. Update the name of the requirement
set linked with the new copy of the model. Navigate from the renamed Simulink model to the item in
the renamed requirement set. This time, it highlights the correct item.

linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant_v2');
linkSet.updateDocUri('crs_req.slreqx', 'crs_req_v2.slreqx');

rmi('view', 'crs_plant_v2/status', 1);

Cleanup After Use Case 3

Clear the open requirement sets and link sets, and close the open models and projects without saving
changes. Close Microsoft Word.

slreq.clear();
bdclose('all');
prj = simulinkproject(); prj.close();
rmidotnet.MSWord.application('kill');

2 Requirements Traceability and Consistency

2-64

Manage Custom Attributes for Links by Using the Simulink®
Requirements™ API

This example shows how to use the Simulink® Requirements™ API to create and manage custom
attributes for link sets and set custom attribute values for links.

Establish Link Set

Load the crs_req requirement file, which describes a cruise control system. Find the link set named
crs_req and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet','Name','crs_req')

ls =
 LinkSet with properties:

 Description: ''
 Filename: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\22\tpd1251b01\slrequirements-ex23809012\crs_req.slmx'
 Artifact: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\22\tpd1251b01\slrequirements-ex23809012\crs_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 8
 Dirty: 0
 CustomAttributeNames: {'Target Speed Change'}

Delete a Custom Attribute

There is an existing custom attribute in the link set called Target Speed Change. Delete the
custom attribute and confirm the results by checking the existing custom attribute names for the link
set.

deleteAttribute(ls,'Target Speed Change','Force',true);
ls.CustomAttributeNames

ans =

 0x0 empty cell array

Add a Custom Attribute of Each Type

Add a custom attribute of each type to the link set. Create an Edit custom attribute with a
description.

addAttribute(ls,'MyEditAttribute','Edit','Description',['You can enter text as' ...
 ' the custom attribute value.'])

Create a Checkbox type attribute and set its DefaultValue property to true.

addAttribute(ls,'MyCheckboxAttribute','Checkbox','DefaultValue',true)

Create a Combobox custom attribute. Because the first option must be Unset, add the options
'Unset', 'A', 'B', and 'C'.

addAttribute(ls,'MyComboboxAttribute','Combobox','List',{'Unset','A','B','C'})

Create a DateTime custom attribute.

 Manage Custom Attributes for Links by Using the Simulink® Requirements™ API

2-65

addAttribute(ls,'MyDateTimeAttribute','DateTime')

Check the custom attributes for the link set. Get information about MyComboboxAttribute to see
the options you added to the Combobox attribute.

ls.CustomAttributeNames

ans = 1x4 cell
 Columns 1 through 3

 {'MyCheckboxAttr...'} {'MyComboboxAttr...'} {'MyDateTimeAttr...'}

 Column 4

 {'MyEditAttribute'}

atrb = inspectAttribute(ls,'MyComboboxAttribute')

atrb = struct with fields:
 name: 'MyComboboxAttribute'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

Set a Custom Attribute Value for a Link

Find a link in the link set and set the custom attribute value for all four custom attributes that you
created.

lk = find(ls,'SID',3);
setAttribute(lk,'MyEditAttribute','Value for edit attribute.');
setAttribute(lk,'MyCheckboxAttribute',false);
setAttribute(lk,'MyComboboxAttribute','B');

Set MyDateTimeAttribute with the desired locale to ensure that the date and time is set in the
correct format on systems in other locales. See “Locale” for more information.

localDateTimeStr = datestr(datetime('15-Jul-2018 11:00:00','Locale','en_US'),'Local');
setAttribute(lk,'MyDateTimeAttribute',localDateTimeStr);

View the attribute values.

getAttribute(lk,'MyEditAttribute')

ans =
'Value for edit attribute.'

getAttribute(lk,'MyCheckboxAttribute')

ans = logical
 0

getAttribute(lk,'MyComboboxAttribute')

ans =
'B'

2 Requirements Traceability and Consistency

2-66

getAttribute(lk,'MyDateTimeAttribute')

ans = datetime
 15-Jul-2018 11:00:00

Edit Custom Attributes

After you define a custom attribute for a link set, you can make limited changes to the custom
attribute.

Add a description to MyCheckboxAttribute and MyComboboxAttribute, then change the list of
options for MyComboboxAttribute. Because you cannot update the default value of Checkbox
attributes, you can only update the description of MyCheckboxAttribute. View the changes.

updateAttribute(ls,'MyCheckboxAttribute','Description',['The checkbox value can be' ...
 ' true or false.']);
updateAttribute(ls,'MyComboboxAttribute','Description',['Choose an option from the ' ...
 'list.'],'List',{'Unset','1','2','3'});
atrb2 = inspectAttribute(ls,'MyCheckboxAttribute')

atrb2 = struct with fields:
 name: 'MyCheckboxAttribute'
 type: Checkbox
 description: 'The checkbox value can be true or false.'
 default: 1

atrb3 = inspectAttribute(ls,'MyComboboxAttribute')

atrb3 = struct with fields:
 name: 'MyComboboxAttribute'
 type: Combobox
 description: 'Choose an option from the list.'
 list: {'Unset' '1' '2' '3'}

Find Links that Match Custom Attribute Value

Search the link set for all links where 'MyEditAttribute' is set to 'Value for edit
attribute.'

lk2 = find(ls,'MyEditAttribute','Value for edit attribute.')

lk2 =
 Link with properties:

 Type: 'Derive'
 Description: '#8: Set Switch Detection'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:14:40
 CreatedBy: 'itoy'
 ModifiedOn: 01-Sep-2021 19:06:44
 ModifiedBy: 'batserve'
 Revision: 5
 SID: 3
 Comments: [0x0 struct]

 Manage Custom Attributes for Links by Using the Simulink® Requirements™ API

2-67

Search the link set for all links where MyCheckboxAttribute is set to true.

lkArray = find(ls,'MyCheckboxAttribute',true)

lkArray=1×11 object
 1x11 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Search the link set for all links where MyComboboxAttribute is set to 'Unset'.

lkArray2 = find(ls,'MyComboboxAttribute','Unset')

lkArray2=1×12 object
 1x12 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Delete Custom Attributes

You can use deleteAttribute to delete attributes. However, because the custom attributes created
in this example are assigned to links, you must set Force to true to delete the attributes. Delete
MyEditAttribute and confirm the change.

deleteAttribute(ls,'MyEditAttribute','Force',true);
ls.CustomAttributeNames

ans = 1x3 cell
 {'MyCheckboxAttri...'} {'MyComboboxAttri...'} {'MyDateTimeAttri...'}

Add a new custom attribute, but don't set any custom attribute values for links.

addAttribute(ls,'NewEditAttribute','Edit');
ls.CustomAttributeNames

ans = 1x4 cell
 Columns 1 through 3

2 Requirements Traceability and Consistency

2-68

 {'MyCheckboxAttr...'} {'MyComboboxAttr...'} {'MyDateTimeAttr...'}

 Column 4

 {'NewEditAttribute'}

Because NewEditAttribute is not used by any links, you can delete it with deleteAttribute by
setting Force to false. Confirm the change.

deleteAttribute(ls,'NewEditAttribute','Force',false);
ls.CustomAttributeNames

ans = 1x3 cell
 {'MyCheckboxAttri...'} {'MyComboboxAttri...'} {'MyDateTimeAttri...'}

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.LinkSet | addAttribute | updateAttribute | inspectAttribute | deleteAttribute
| getAttribute | setAttribute

Related Examples
• “Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API” on

page 1-79

More About
• “Customize Links with Custom Attributes” on page 2-43

 Manage Custom Attributes for Links by Using the Simulink® Requirements™ API

2-69

Make Requirements Fully Traceable with a Traceability Matrix
This example shows how to find requirements that are not traceable to Model-Based Design items,
and how to trace those requirements by creating links with a traceability matrix.

A traceability matrix displays links between items in Model-Based Design artifacts such as Simulink®
Requirements™ objects, Simulink model elements, Simulink Test™ objects, and MATLAB® code lines.
You can apply filters and focus only on the items that you want to see. You can use the matrix to
identify unlinked items and implement them in your design.

To read more about how to use the traceability matrix, see “Track Requirement Links with a
Traceability Matrix” on page 2-5.

Open the Requirements Definition for a Cruise Control Model project. Load the crs_req_func_spec
requirement set.

slreqCCProjectStart;
slreq.load('crs_req_func_spec');

Generate a Traceability Matrix

Open the Traceability Matrix window.

slreq.generateTraceabilityMatrix;

In the Traceability Matrix window, click Add. In the Select Artifacts dialog, set Left to
crs_req_func_spec.slreqx and set Top to crs_controller.slx. Then click Generate Matrix.
A traceability matrix is generated with the specified requirement set on the left and the Simulink
model on the top.

2 Requirements Traceability and Consistency

2-70

Identify Unlinked Requirements

To identify unlinked items, click Highlight Missing Links. Unlinked requirements are highlighted in
yellow in the left column and unlinked model elements are highlighted in the top row.

 Make Requirements Fully Traceable with a Traceability Matrix

2-71

Scroll to the System Interface > Inputs parent requirement. Click Scope to focus the matrix
view on that hierarchy. The child requirements under Inputs do not have links to the blocks in the
Simulink model. However, the traceability matrix that you created only shows links between the
crs_req_func_spec requirement set and the crs_controller model. The crs_req_func_spec
requirement set may have more links to other artifacts within your project.

Generate a Traceability Matrix with Multiple Artifacts

To view links between multiple artifacts at the same time, you can create a multi-artifact matrix. Click
Configure Matrix to add more artifacts to your matrix. In the Configure Matrix dialog box, in the
Available Artifacts pane, select crs_req_func_spec.slreqx. The artifacts that have links
between the selected artifact are highlighted in the Available Artifacts pane. In this case, each
artifact contains links between the crs_req_func_spec requirement set, except for

2 Requirements Traceability and Consistency

2-72

crs_req_func_spec.slreqx itself. Drag all of the highlighted artifacts to the top artifact list. The
expand icon () in the matrix preview indicates that there are links between items in these artifacts.

Click Update Matrix to add the artifacts to your traceability matrix. Starting from the far-left column
in the top row, select each artifact and click Collapse All. The blue lines in the matrix indicate where
one artifact ends and another begins.

 Make Requirements Fully Traceable with a Traceability Matrix

2-73

Select the Inputs parent requirement and click Scope to focus on the Inputs child requirements.
Click Highlight Missing Links. Now you can see that some of the child requirements under Inputs
link to items in the crs_plant model.

2 Requirements Traceability and Consistency

2-74

Link Unlinked Inputs to Model Elements

The crs_controller and crs_plant models contain model elements that are related to the
Inputs child requirements, however not all of the Inputs child requirements are linked. Link all of
the Inputs child requirements to the model elements for full traceability. First, click Configure
Matrix and remove all of the artifacts from the Traceability Matrix except for crs_req_func_spec
on the left, and crs_controller and crs_plant on the top by right-clicking the artifacts and
selecting Remove Artifacts. Click Update Matrix. In the updated matrix, select the Inputs parent
requirement and click Scope to focus on the Inputs child requirements.

Some of the child requirements link to items in crs_plant. Link the remaining unlinked Inputs
child requirements to model elements in crs_controller. Select the the cell corresponding to
crs_controller and click Scope.

To focus on the unlinked requirements, apply the Missing Links filter. In the Filter Panel, under
Left, under Link, click Missing Links. The filter omits rows with linked items. You can verify this by
clicking Highlight Missing Links.

 Make Requirements Fully Traceable with a Traceability Matrix

2-75

Collapse the CruiseControlMode, DriverSwRequest and TargetSpeedThrottle subsystems by
select each subsystem and clicking Collapse All. Create a link between the Enable Switch
requirement and the enbl block by selecting the cell corresponding to those two items and clicking
Create. In the Create Links dialog box, set Type to Implements, then click Create to create a link
between the two items.

2 Requirements Traceability and Consistency

2-76

You can create multiple links at a time when you hold Ctrl, select the cells where you want to create
links, and click Create Links. Create links between the remaining requirements and the
corresponding model element:

• The Cancel Switch requirement and the cncl block
• The Set Switch requirement and the set block
• The Resume Switch requirement and the resume block
• The Increment Switch requirement and the inc block
• The Decrement Switch requirement and the dec block
• The Key Position requirement and the key block

In the Create Links dialog, set Type to Implements for all of the links.

 Make Requirements Fully Traceable with a Traceability Matrix

2-77

Clear the Missing Links filter by clicking Clear Filter in the top artifact list. Click Show All to show
all of the artifacts. All of the Inputs child requirements link to design items, so they are no longer
highlighted. Collapse the hierarchies under crs_controller and crs_plant. The expand icon ()
indicates that all of the Inputs child requirements are linked.

2 Requirements Traceability and Consistency

2-78

Open Items in Artifact Context

You can open items in rows and columns in their artifact context by double-clicking the cell
corresponding to an item. For example, double-clicking a cell corresponding to a Simulink block
opens the Simulink model and subsystem that the block is in.

Open the Enable Switch requirement in the Requirements Editor by double-clicking it. Add
additional text to the requirement Description: "The Cruise button enables the cruise
control as long as all other conditions are met." Then click Save.

 Make Requirements Fully Traceable with a Traceability Matrix

2-79

In the Requirements Editor, the requirement summary and the associated link (listed in the Details
pane, under Links) are highlighted in red because the link associated with this requirement has a
change issue.

View and Clear Change Issues

When you change a requirement that is linked to another item, the requirement is highlighted in red
to indicate that there is a change issue associated with the link. The link has a change issue because
you changed the description for the Enable Switch requirement.

Return to the Traceability Matrix. Click Update to refresh the matrix. Select the Inputs parent
requirement and click Scope to focus on the Inputs child requirements. Click Highlight Missing
Links > Highlight Changed Links, then click Highlight Missing Links > Show Changed Links
Only. The links that have associated change issues are shown, and the requirement, linked item, and
link are highlighted in red.

2 Requirements Traceability and Consistency

2-80

 Make Requirements Fully Traceable with a Traceability Matrix

2-81

Because you changed only the description, the change did not affect the requirement implementation
or verification. Clear the change issue by selecting the cell containing the link, then click Clear
Change Issue. Under Comment, enter "Added additional information to the
requirement description." Then click Clear All.

You can view the comment when you select the link in the Requirements Editor, in the Details pane,
under Comments.

Generate a Report from the Traceability Matrix

Update the matrix to reflect the cleared change issues by clicking Update. Select Inputs parent
requirement and click Scope. Expand all links by selecting the cell containing the expand icon ()
and clicking Expand All. Collapse any hierarchies that don't contain links by clicking Collapse All.
This view shows the links to the Inputs child requirements. Generate an HTML report that contains

2 Requirements Traceability and Consistency

2-82

a static snapshot of the current view of the traceability matrix by clicking Export > Generate HTML
Report. Select a location to save the file and click Save.

Cleanup

Clear the open requirement sets and link sets and close the Traceability Matrix window. Close all
open models. Close the current project.

slreq.clear;
bdclose all;
slproject.closeCurrentProject();

See Also
slreq.generateTraceabilityMatrix | slreq.getTraceabilityMatrixOptions

More About
• “Track Requirement Links with a Traceability Matrix” on page 2-5

 Make Requirements Fully Traceable with a Traceability Matrix

2-83

Modeling System Architecture of Small UAV
Overview

This example shows how to use System Composer to set up the architecture for a small unmanned
aerial vehicle, composed of six top-level components. Learn how to refine your architecture design by
authoring interfaces, inspect linked textual requirements, define profiles and stereotypes, and run a
static analysis on such an architecture model.

Open the project.

>> scExampleSmallUAV

Starting: Simulink

Each top-level component is decomposed into its subcomponents. Navigate through the hierarchy to
view the composition for each component. The root component, scExampleSmallUAVModel, has
input and output ports that represent data exchange between the system and its environment.

Author Interfaces

Define interfaces for domain-specific data between connections. The information shared between two
ports defined by interface element property values further enhances the specification. In the
Modeling tab in the toolstrip, select Design, then click Interface Editor.

2 Requirements Traceability and Consistency

2-84

Click the GS Commands port on the architecture model to highlight the
architecture_gsCommands interface and indicate the assignment of the interface.

Inspect Requirements

A Simulink Requirements license is required to inspect requirements in a System Composer
architecture model.

 Modeling System Architecture of Small UAV

2-85

Components in the architecture model link to system requirements defined in
smallUAVReqs.slreqx. Open the Requirements Manager. In the bottom right corner of the
model pane, click Show Perspectives. Then, click Requirements.

Select components on the model to see the requirement they link to, or, conversely, select items in the
Requirements view to see which components implement them. Requirements can also be linked to
connectors or ports to allow traceability throughout your design artifacts. To edit the requirements in
smallUAVReqs.slreqx, select the Requirements Editor from the menu.

The Carrying Capacity requirement highlights the total mass able to be carried by the aircraft.
This requirement, along with the weight of the aircraft, is part of the mass rollup analysis performed
for early verification and validation.

Define Profiles and Stereotypes

To complete specifications and enable analysis later in the design process, stereotypes add custom
metadata to architecture model elements. This model has stereotypes for these elements:

• On-board element, applicable to components
• RF connector, applicable to ports
• RF wiring, applicable to connectors

2 Requirements Traceability and Consistency

2-86

Stereotypes are defined in .xml files by using Profiles. The profile UAVComponent.xml is attached to
this model. Edit a profile by using the Profile Editor. On the Modeling tab, click Profile Editor.

The display appears below.

Analyze the Model

To run static analyses on your system, create an Analysis Model from your architecture model. An
Analysis Model is a tree of instances generated from the elements of the architecture model in which
all referenced models are flattened out, and all variants are resolved.

Click Analysis Model on the Views menu.

Run a mass rollup on this model. In the dialog, select the stereotypes that you want to include in your
analysis. Select the analysis function by browsing to utilities/massRollUp.m. Set the model
iteration mode to Bottom-up.

 Modeling System Architecture of Small UAV

2-87

Uncheck Strict Mode so that all components can have a Mass property instantiated to facilitate
calculation of total mass. Click Instantiate to generate an analysis.

2 Requirements Traceability and Consistency

2-88

Once on the Analysis Viewer screen, click Analyze. The analysis function iterates through model
elements bottom up, assigning the Mass property of each component as a sum of the Mass properties
of its subcomponents. The overall weight of the system is assigned to the Mass property of the top
level component, scExampleSmallUAVModel.

See Also

More About
• “Requirement Links” on page 2-32
• “Link Blocks and Requirements” on page 2-2
• “Review Requirements Implementation Status” on page 3-2

 Modeling System Architecture of Small UAV

2-89

Requirements-Based Verification

• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6
• “Validate Requirements by Analyzing Model Properties” on page 3-9
• “Justify Requirements” on page 3-16
• “Linking to a Test Script” on page 3-19
• “Include Results from External Sources in Verification Status” on page 3-27
• “Linking to a Result File” on page 3-30
• “Integrating Results from a Custom-Authored MATLAB Script as a Test” on page 3-36
• “Integrating Results from an External Result file” on page 3-40
• “Integrating results from a custom authored MUnit script as a test” on page 3-44
• “Fix Requirements-Based Testing Issues” on page 3-48

3

Review Requirements Implementation Status
In this section...
“Implement Functional Requirements by Linking to Model Elements” on page 3-2
“View the Implementation Status” on page 3-3

Simulink Requirements provides you with implementation status summaries for your requirement
sets. You can use these status summaries to identify requirement implementation gaps in your design.

Implement Functional Requirements by Linking to Model Elements
The requirement type specifies the role that a requirement has. Functional requirements are meant
to be implemented and contribute to the implementation status, as well as requirements with a
custom type that is a subtype of Functional. For more information, see “Define Custom
Requirement and Link Types” on page 2-40. When you select a requirement in the Requirements
Editor, the requirement type is displayed in the Details pane, under Properties. When you add a
requirement, it is created with the Functional type by default. If a requirement is not meant to be
implemented, you can change the requirement type. To read more about requirement types, see
“Requirement Types” on page 1-6.

To implement a functional requirement, you can link it with a Simulink, Stateflow, or System
Composer model element. Requirements that have an incoming link with the Implement type or a
custom link type that is defined as a subtype of Implement are considered implemented by the
implementation status. For more information, see “Link Types” on page 2-33 and “Define Custom
Requirement and Link Types” on page 2-40.

The implementation status for a requirement set is cumulatively aggregated over the requirements in
the set. Each child requirement must be implemented for the parent requirement to be considered
implemented. If you need to manually implement a requirement, you can link it to a justification
object for implementation. The implementation status considers this requirement's lack of
implementation to be justified. To read more about justifying requirements, see “Justify
Requirements” on page 3-16.

Note The implementation status will consider any requirement to be implemented if it has an
incoming link of the Implement type, regardless of the link source item (unless the link source is a
justification, in which case it will be considered justified). To read about how to change an existing
link type, see “Link Types” on page 2-33.

When you link a requirement to a Simulink, Stateflow, or System Composer model element, the link is
created with the Implement type by default. When you select a requirement in the Requirements
Editor, associated links and the link type are displayed in the Details pane, under Links.

3 Requirements-Based Verification

3-2

Tip If a requirement can be implemented by multiple items and you want to get the detailed status of
the implementation of each item, you can split a requirement into smaller requirements and
implement each requirement separately.

View the Implementation Status
You can view the implementation status for your requirement sets from both the Requirements Editor
and the Requirements Browser in the Requirements Perspective View. To toggle the status display in

the Requirements Editor, select Columns > Implementation Status. In the Requirements
Editor or the Requirements Browser, point to the Implemented column for each requirement or
requirement set to view the implementation status associated with it.

 Review Requirements Implementation Status

3-3

The fullness of the bar indicates how many requirements in a group (including the parent
requirement and child requirements) are linked to implementation items. The color indicates the level
of implementation:

• Implemented (blue): The requirement is linked to an item with an Implement type link.
• Justified (light blue): The requirement is linked to a justification with an Implement type link.

For more information, see “Justify Requirements” on page 3-16.
• None (colorless): The requirement does not have any Implement type links.

3 Requirements-Based Verification

3-4

See Also

More About
• “Review Requirements Verification Status” on page 3-6
• “Justify Requirements” on page 3-16
• “Requirement Types” on page 1-6
• “Link Types” on page 2-33

 Review Requirements Implementation Status

3-5

Review Requirements Verification Status
In this section...
“Verify Functional Requirements” on page 3-6
“Display Verification Status” on page 3-7
“Update Verification Status by Running Tests or Analyses” on page 3-8
“Include Verification Status in Report” on page 3-8

You can view the verification status of your requirements in the Requirements Browser and
Requirements Editor. The verification status reflects results from simulation testing using Simulink
Test or property proving using Simulink Design Verifier™. Use Verify type links from requirements
to simulation assessments or proof objectives. For more information, see “Link Types” on page 2-33.

Verify Functional Requirements
The requirement type specifies the role of a requirement. Functional requirements are meant to be
implemented and contribute to the verification status, as well as requirements with a custom type
that is a subtype of Functional. Other requirement types do not contribute to verification status.
For more information, see “Requirement Types” on page 1-6 and “Define Custom Requirement and
Link Types” on page 2-40.

You can verify functional requirements by linking them with certain verification items with Verify
type links.

• Simulation testing: Requirement verification status reflects the result of the following linkable
Simulink Test items after they are run in the Test Manager:

• Test files
• Test suites
• Test cases
• Iterations
• Assessments

To learn how to verify requirements with Simulink Test items, see “Test Model Against
Requirements and Report Results” on page 13-2.

Run tests from the Simulink Test Manager, or using sltest.testmanager.run. For a brief
tutorial on creating and running a test case, follow the first part of “Create and Run a Baseline
Test” (Simulink Test).

Run-time assessments from verify statements or “Model Verification Blocks” (Simulink Test) can
be captured by monitoring those assessments through test cases in the Test Manager. For more
information, see Assess Model Simulation Using verify Statements (Simulink Test).

Note To view the verification status of a requirement that is linked to a test authored in MATLAB,
you must use a MATLAB-based Simulink test. See “Test Models Using MATLAB-Based Simulink
Tests” (Simulink Test).

• Property proving: Verification status reflects the analysis result of properties modeled using:

3 Requirements-Based Verification

3-6

• Simulink Design Verifier Proof Objective blocks.
• Model Verification blocks.

Link blocks to requirements, then analyze the properties. For more information, see “Requirement
Links” on page 2-32.

You can also verify requirements by linking to external result sources with Confirm type links. For
more information, see “Include Results from External Sources in Verification Status” on page 3-27

Display Verification Status
The verification status is summarized in the Verified column of the Requirements Browser and
Requirements Editor. To display the column:

•
In the Requirements Editor, select Columns > Verification Status

• In the Requirements Browser pane of the model window, right-click a requirement and select
Verification Status.

For example, the Verified column shows partial verification links for this requirement set, with one
failed result:

 Review Requirements Verification Status

3-7

The fullness of the bar indicates how many requirements in a group (parent + children) are linked to
verification items. Color indicates the test or analysis results:

• Passed (green): The linked test(s) passed, or the analysis proved the objective(s).
• Failed (red): The linked test(s) failed, or the analysis falsified the objective(s).
• Justified (light blue): The requirement is excluded from the status with a justification. For more

information, see “Justify Requirements” on page 3-16.
• Unexecuted: (yellow): The linked test(s) or objective(s):

• Have not run or executed
• Have been updated more recently than the most recent result

• None (colorless): The requirement does not have Verify type links.

Update Verification Status by Running Tests or Analyses
You can update the verification status by running tests or analyses linked to your requirements:

1 In the Requirements Editor, right click the requirement and select Run Tests.
2 In the Run Tests dialog box, select the tests.
3 Click Run Tests.

You can also update verification status by running tests or analysis outside of the Requirements
Editor:

• In Simulink Test, run the tests in the Test Manager.
• In Simulink Design Verifier, run property proving analysis.
• In Simulink, run the model that contains the Model Verification blocks.

Note If you have linked requirements to Simulink Design Verifier Proof Objective blocks in multiple
models, the Run Tests dialog box runs a Simulink Design Verifier analysis when the corresponding
models are open.

Include Verification Status in Report
You can include verification status in your requirements report:

1 In the Requirements Editor menu, select Report > Generate Report.
2 Select Verification Status.
3 Click Generate Report.

For more information, see “Report Requirements Information” on page 4-10

See Also

More About
• “Review Requirements Implementation Status” on page 3-2
• “Link to Test Cases from Requirements”

3 Requirements-Based Verification

3-8

Validate Requirements by Analyzing Model Properties
Validate a requirement set by analyzing properties that model individual requirements. Falsified
properties indicate design and requirement set incompleteness.

Overview

In this example, you analyze model properties that are based on four requirements of an engine
thrust reverser system. Falsified results from the property analysis suggest that the system design
requirements are incomplete -- the system allows behavior that violates several of the following
requirements:

1 The thrust reverser shall not deploy if the airspeed is greater than 150 knots.
2 The thrust reverser shall not deploy if the aircraft is in the air, as indicated by the value of the

weight on wheels sensors. If the aircraft is in the air, the signal value for each of two weight on
wheels (WOW) sensors is false.

3 The thrust reverser shall not deploy if the value of either thrust sensor is positive.
4 The thrust reverser shall not deploy if the rotational speed of the landing gear wheels is less than

a threshold value.

To better understand the model behavior, you analyze dependencies for a time series input that
causes undesirable model behavior because the system lacks required control logic. Then, you
analyze a revised control system model which passes the property analysis.

Analyze the Safety Properties

1. Click the Open Model button to open the original model and create a working directory of the
example files.

 Validate Requirements by Analyzing Model Properties

3-9

The Safety Properties subsystem is a Verification Subsystem block from the Simulink® Design
Verifier™ library. The verification logic in Safety Properties models the safety requirements. For
example, the airspeed requirement is verified by:

For more information about Verification Subsystem blocks, see Verification Subsystem (Simulink
Design Verifier).

2. View the requirements. In the model, click the Show Perspectives views icon at the lower right
and select Requirements. The Requirements pane opens. Expand
thrust_reverser_safety_requirements.

The safety requirements link to the Assertion blocks in the Safety Properties subsystem. The
Assertion blocks are considered proof objectives. The verification status for each requirement reflects
the property analysis results of its corresponding Assertion block.

3 Requirements-Based Verification

3-10

3. Display the verification status for the requirements. Right-click one of the requirements in the
browser and select Verification Status. The Verified column indicates that the requirements are
unexecuted.

4. Analyze the model properties. In the Apps tab, click Design Verifier. In the Design Verifier tab,
click Prove Properties.

When the property analysis completes, click the Refresh button to update the status in the Verified
column. The results show that three out of four objectives are falsified -- analysis found a signal
condition that falsifies the properties, and therefore violates the requirements.

Analyze Model Behavior with Counterexamples

From the Design Verifier Results Summary window, click HTML to open the detailed analysis report.
In Chapter 4, each falsified property lists a counterexample. For example, in the counterexample that
falsifies the airspeed requirement:

• At t = 0.1, the thrust reverser is deployed with airspeed below the threshold.
• At t = 0.2, the thrust reverser is still deployed with airspeed above the threshold.

The counterexample time series indicates a condition that might be difficult to encounter in
simulation, but nonetheless causes model behavior that violates a requirement. Investigate the
behavior by analyzing signal dependencies in the counterexample:

1. In the Design Verifier tab, click the Highlight in Model button.

2. Select the airspeed valid assertion block in the Test Unit > Safety Properties > airspeed
property subsystem.

3. In the Design Verifier tab, click the Debug Using Slicer button. The model highlights
dependencies of the airspeed valid assertion, and displays signal values at T = 0.2.

 Validate Requirements by Analyzing Model Properties

3-11

4. Move up one level in the model, to the Safety Properties subsystem. Step back through the
counterexample simulation time. In the Simulation tab, click Step Back.

5. At T = 0.1, the average airspeed is below the threshold, and the thrust reverser is deployed.
Stepping forward, at T = 0.2, the average airspeed is above the threshold, and the thrust reverser is
still deployed. This violates a requirement.

The falsified property and the dependency analysis suggest that the control system algorithm is
incompletely designed, and the requirements are incomplete.

Analyze the Redesigned System

Redesigning a control system requires rethinking requirements. In this case, the lack of an
intermediate standby state allows undesirable system behavior when inputs change suddenly. Adding
an intermediate deployment mode which delays thrust reverser response resolves the issue.

Open the reqs_validation_property_proving_redesigned_model model. Open the
thrustReversers chart.

3 Requirements-Based Verification

3-12

 Validate Requirements by Analyzing Model Properties

3-13

The additional design requirement states that the thrust reverser shall deploy after a pause. The
redesigned model includes:

• An additional aboutToBeDeployed state.
• Expanded transition conditions that return to undeployed.

Create links from the verification blocks in the redesigned model to the requirements:

1. In the model, from the Apps tab, click Requirements Manager.

2. In the Requirements tab, click Requirements Editor.

3. Open thrust_reverser_safety_requirements in the Requirements Editor.

4. For requirement 1.1, Airspeed Condition, link to the airspeed valid block in the Safety Properties >
airspeed property subsystem. Drag R1.1 from the requirements browser to the airspeed valid block in
the model.

5. The new link appears in the Requirements Editor, in the Details pane, under Links.

6. Delete the link to the assert block in the original model. If the original model is closed, this link
appears unresolved. Next to the link, click the Delete Link icon.

3 Requirements-Based Verification

3-14

7. Repeat for the other three requirements and verification blocks in the redesigned model.

Run the property analysis on the revised model. View the results in the Requirements pane.

The results show that the properties are valid.

 Validate Requirements by Analyzing Model Properties

3-15

Justify Requirements
Use requirement justifications to exclude requirements from the implementation and verification
status for your requirement sets. Functional requirements contribute to the implementation and
verification status for the requirement set. For more information, see “Requirement Types” on page
1-6.

You might have functional requirements in your model design specification that cannot be
implemented in your design. You might also have requirements that require manual testing, instead
of linking to test cases or verification subsystems. You can justify these requirements to override their
implementation and verification statuses and iterate more effectively on your model design.

A justification is an object associated with a requirement. All justification objects in a requirement set
are grouped under a single top-level justification object as its children. Any requirement can be
justified for implementation, verification, or both. Justified requirements do not contribute to the
overall aggregation of implementation and verification status and appear light blue in the
Implemented and Verified columns of the Requirements Editor.

3 Requirements-Based Verification

3-16

There are two workflows for justifying requirements in Simulink Requirements. You can create a
justification object, create a link to an existing justification, or create a link to a new justification in
one step.

• Create a justification object by clicking Add Requirement > Add Justification in the

Requirements Editor or the icon in the Requirements Browser.
• Link to an existing justification by selecting it in the Requirements Editor or Requirements

Browser by right-clicking it and selecting Select for Linking with Requirement. Then, right-
click the requirement and select Create a Link From.... By default, the link has Type set to
Implements.

 Justify Requirements

3-17

• In the Requirements Editor, create a link to a new justification by right-clicking the requirement
and selecting Justification > Link with new Justification for implementation or Link with
new Justification for verification.

To justify a parent requirement and all its child requirements, select the Hierarchical Justification
option in the Details pane of the Requirements Editor.

Note You cannot link justification objects to objects that are not requirements.

See Also

More About
• “Review Requirements Implementation Status” on page 3-2
• “Review Requirements Verification Status” on page 3-6

3 Requirements-Based Verification

3-18

Linking to a Test Script
In this workflow, you link a requirement to a MATLAB script using the “Outgoing Links Editor” on
page 10-6 and the API. The verification status in the Requirements Editor reflects the test results.
These illustrations follow the workflow for including external test results in the requirement
verification status. For more information, see “Include Results from External Sources in Verification
Status” on page 3-27.

Linking to a Test Script Using the Outgoing Links Editor
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

You have a MATLAB script called runmytests.m that runs a test for the Counter class in
Counter.m. The test script contains custom methods that write results a TAP format to a file named
results.tap. Assume that you have run the test and it has produced the results.tap file that
contains the results of the test. You want to link the results of the test to a requirement in
counter_req.slreqx. Follow these steps to create and view the verification status with a test case
called counterStartsAtZero in runmytests.m script:

• “Create the Register the Link Type” on page 3-19
• “Create the Link” on page 3-20
• “View the Verification Status” on page 3-21

Create the Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_mymscripttap.m.
3 In linktype_mymscripttap.m

a Replace the function name linktype_TEMPLATE with linktype_mymscripttap.m.
b Set linkType.Label as 'MScript TAP Results'.
c Set linkType.Extensions as {'.M'}.

 Linking to a Test Script

3-19

d Uncomment the command for GetResultFcn in order to use it in
linktype_mymscripttap and enter:

 linktype.GetResultFcn = @GetResultFcn;

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end

 end

 function resultfile = getResultFile(testFile)
 resultMap = ["runmytests.m", "results.tap";...
 "othertests.m", "results2.tap"];
 resultfile = resultMap(resultMap(:,1) == testFile,2);
 end

GetResultFcn uses the utility slreq.verification.services.TAP to interpret the
result files for verification. See slreq.verification.services.TAP for more details. For
more information about GetResultFcn, see “Links and Link Types” on page 10-2.

4 Save linktype_mymscripttap.m.
5 Register the link type. At the command line, enter:

rmi register linktype_mymscripttap

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_mymscripttap

Create the Link

Follow these steps to add the link manually in the Outgoing Links Editor:

1 Open the Requirements Editor and, in the counter_req.slreqx requirements set, right-click
the child requirement 1.1 and select Open Outgoing Links dialog.

2 In the Outgoing Links Editor dialog box, in the Requirements tab, click New.
3 Enter these details to establish the link:

• Description: runmytestscounterStartsAtZero
• Document Type: MScript TAP Results
• Document: runmytests.m
• Location: counterStartsAtZero

4 Click OK. The link is highlighted in the Links section of the Requirements Editor.

3 Requirements-Based Verification

3-20

View the Verification Status

Update the verification status in the Requirements Editor. Click Refresh to see the verification
status for the requirements in the Requirements Editor. This shows the verification status for entire
requirement set that passed or failed.

 Linking to a Test Script

3-21

The requirements for counterStartsAtZero are fully verified. Here, the verification status shows
that out of three tests, one test passed.

Linking to a Test Script Using the API
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

3 Requirements-Based Verification

3-22

You have a MATLAB script called runmytests.m that runs a test for Counter class in Counter.m.
The test script contains custom methods that write results in a TAP format to a file named
results.tap. Assume that you have run the test and it has produced the results.tap file that
contains the results of the test. You want to link the results of the test to a requirement in
counter_req.slreqx. Follow these steps to create and view the verification status with a test case
called counterStartsAtZero in runmytests.m script:

• “Create and Register the Link Type” on page 3-23
• “Create the Link” on page 3-24
• “View the Verification Status” on page 3-24

Create and Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_mymscripttap.m.
3 In linktype_mymscripttap.m:

a Replace the function name linktype_TEMPLATE with linktype_mymscripttap.m.
b Set linkType.Label as 'MScript TAP Results'.
c Set linkType.Extensions as {'.M'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_mymscripttap and enter:

 linktype.GetResultFcn = @GetResultFcn;

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end

 end

 Linking to a Test Script

3-23

 function resultfile = getResultFile(testFile)
 resultMap = ["runmytests.m", "results.tap";...
 "othertests.m", "results2.tap"];
 resultfile = resultMap(resultMap(:,1) == testFile,2);
 end

GetResultFcn uses the utility slreq.verification.services.TAP to interpret the
result files for verification. See slreq.verification.services.TAP for more details. For
more information about GetResultFcn, see “Links and Link Types” on page 10-2.

4 Save linktype_mymscripttap.m.
5 Register the link type. At the command line, enter:

rmi register linktype_mymscripttap

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_mymscripttap

Create the Link

Follow these steps to create the link:

1 From the MATLAB command prompt, enter:

externalSource.id = 'counterStartsAtZero';
externalSource.artifact = 'runmytests.m';
externalSource.domain = 'linktype_mymscripttap';

2 Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);
3 Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case counterStartsAtZero for the requirement SID. In
Requirements Editor, the link appears in the Links > Confirmed By section.

View the Verification Status

Update the verification status. At the MATLAB command prompt, type:

reqSet.updateVerificationStatus

3 Requirements-Based Verification

3-24

Fetch the verification status for the requirement by entering :

status = reqSet.getVerificationStatus

This shows which of the requirements in the requirements set have passed or fail. Click on Refresh

 button to see the verification status for the requirements in the Requirements Editor.

The requirements for counterStartsAtZero are fully verified. Here, the verification status shows
that out of three tests, one test passed.

Integrating Results from a MATLAB Unit Test Case
You can also integrate the results from a MATLAB Unit Test case by linking to a test script. The test is
run with a customized test runner using a XML plugin that produces a JUnit output. The XMLPlugin
class creates a plugin that writes test results to an XML file. For more information, see
matlab.unittest.plugins.XMLPlugin.producingJUnitFormat.

You can register the domain and create the links in the same way as with the test script. The
verification status for a set of requirements is shown in the Simulink Requirements Editor.

 Linking to a Test Script

3-25

See Also

More About
• “Include Results from External Sources in Verification Status” on page 3-27

3 Requirements-Based Verification

3-26

Include Results from External Sources in Verification Status
Simulink Requirements allows you to include the verification status of results from external sources
in the Simulink Requirements™ Editor. You can summarize requirements verification status, author
your custom domain registration, and write custom logic to fetch the results. For more information,
see “Review Requirements Verification Status” on page 3-6.

You can also include test results from:

• Continuous integration (CI) servers such as Jenkins
• Custom results updated manually or with test scripts

You can create custom link type registrations that interpret test results from the external
environment into language specific to your development environment. See, “Custom Link Types” on
page 10-8.

You can use built-in verification services to interpret result files for most common cases, such as JUnit
and TAP (Test Anything Protocol), to include external test results in the requirements verification
status.

When you include the verification status of external test results in your requirements:

• The external results are listed in the Verified column of the Requirements Editor, along with
results from other sources, such as Model Verification blocks and Simulink Test test files.

• Pass/fail indication is reflected in requirement links.
• Result status is automatically aggregated across requirement hierarchies.
• Result status automatically updates as requirements are added or removed.

How to Populate Verification Results from External Sources
Commonly, external test results are run and managed outside of the MATLAB environment. Test
results can be the product of:

• Running test scripts or other programs that generate a result file
• Running a MATLAB Unit Test test case with a custom TestRunner object, with or without a CI

server

You can create links to the test results by either:

• Linking directly to a result file. The external result artifact is used as the link destination and the
requirements are used as the links source. To create custom link type, you must know:

1 The file location
2 The file format (for example, JUnit or Excel)

For details, see “Linking to a Result File” on page 3-30.
• Linking to a test script and providing code that fetches results based on that test location. The

external test artifacts are used as the link destination and the requirements are used as the link
source. Your custom logic in the GetResultFcn function should locate the result artifact that
corresponds to the test artifact and fetch results from that result artifact. See “Linking to a Test
Script” on page 3-19.

 Include Results from External Sources in Verification Status

3-27

The following steps are used to create the links from external sources and populate verification
statuses from them:

1 Create a custom link type: In the Requirements Management Interface (RMI), create a custom
link type for your test result file:

a Write a MATLAB function that implements the custom link type. The GetResultFcn is
implemented in the custom link type. For more information, see “Links and Link Types” on
page 10-2.

b Save the function on the MATLAB path.

For details, see “Custom Link Type Registration” on page 10-15.
2 Register the custom link type: See “Custom Link Type Registration” on page 10-15. After

registration, the link type is available in the Outgoing Links Editor in the Document type menu.
3 Link from the requirement to the test result file or test script: Use the Outgoing Links

Editor or slreq.createLink to link from the requirements to the results file.
4 Display the verification status: In the Requirements Editor, view the Verified column to view

the verification status. For details, see “Display Verification Status” on page 3-7.
5 Refresh the requirements view: After the tests run, refresh the verification status by clicking

the Refresh button.

You can include the verification status from external sources in your requirements report by clicking
Report > Generate Report from the Requirements Editor.

When populating verification results from external sources:

• Test the GetResultFcn code before integrating the code with rmi register. For more
information about GetResultFcn, see “Links and Link Types” on page 10-2.

3 Requirements-Based Verification

3-28

• Confirm the custom link type registration in the Outgoing Links Editor.
• Use caching to improve the performance for cases where a single file contains a result for many

links.
•

Insert break points into the GetResultFcn code and use the Refresh button to re-execute it.
• When using Projects, register and unregister the custom link type when using in project startup or

shutdown scripts.

See Also

Related Examples
• “Integrating Results from a Custom-Authored MATLAB Script as a Test” on page 3-36
• “Integrating Results from an External Result file” on page 3-40
• “Integrating results from a custom authored MUnit script as a test” on page 3-44

More About
• “Linking to a Test Script” on page 3-19
• “Linking to a Result File” on page 3-30

 Include Results from External Sources in Verification Status

3-29

Linking to a Result File
You can link a requirement to a test result file that is in Microsoft Excel format using the “Outgoing
Links Editor” on page 10-6 and the API. The verification status in the Simulink Requirements
Editor reflects the test results. These illustrations follow the workflow for including external test
results in the requirement verification status. For more information, see “Include Results from
External Sources in Verification Status” on page 3-27.

Open Example Files
Open the “Integrating Results from an External Result file” on page 3-40 example.

openExample(['slrequirements/' ...
 'IntegratingResultsFromAnExternalResultFileExample'])

Open the counter_req requirement set in the Requirements Editor. This requirement set has child
requirements that have requirement IDs and descriptions. For more details on how to create
requirement sets, see “Work with Requirements in the Simulink Editor”.

The external test results are contained in an Excel file called results.xlsx. The verification status
in Simulink Requirements updates based on the values of the cells in the Excel sheet. A unique ID in
the Test column identifies each result in the Status column. The Test and Status labels are
contained in a header row.

3 Requirements-Based Verification

3-30

Create and Register a Custom Link Type
Before creating the links to the external result file, first create and register a custom link type.

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_myexternalresults.m.
3 In linktype_myexternalresults.m:

a Replace the function name linktype_TEMPLATE with linktype_myexternalresults.
b Set linkType.Label as 'Excel Results'.
c Set linkType.Extensions as {'.xlsx'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_myexternalresults and enter:

linktype.GetResultFcn = @GetResultFcn;
......
function result = GetResultFcn(link)
 testID = link.destination.id;
 if testID(1) == '@'
 testID(1) = [];
 end
 resultFile = link.destination.artifact;

 if ~isempty(resultFile) && isfile(resultFile)
 resultTable = readtable(resultFile);
 testRow = strcmp(resultTable.Test,testID);
 status = resultTable.Status(testRow);

 if status{1} == "passed"
 result.status = slreq.verification.Status.Pass;
 elseif status{1} == "failed"
 result.status = slreq.verification.Status.Fail;
 else
 result.status = slreq.verification.Status.Unknown;
 end
 else
 result.status = slreq.verification.Status.Unknown;
 end
end

For more information about GetResultFcn, see “Links and Link Types” on page 10-2.
4 Save linktype_myexternalresults.m.
5 Register the link type. At the command line, enter:

rmi register linktype_myexternalresults

Note If the command returns a warning, then you must unregister the link type and register it
again. Unregister the link type by entering:

 Linking to a Result File

3-31

rmi unregister linktype_myexternalresults

Create a Requirement Link
You can create a link from a requirement to a test result for a test case from the external result file to
confirm the requirement. You can create the link by using the Outgoing Links Editor, or by using the
Simulink Requirements API.

Create a Link by Using the Outgoing Links Editor

Create the link from a requirement to the external results file by using the Outgoing Links Editor:

1 Open the Requirements Editor and, in the counter_req.slreqx requirement set, right-click
the child requirement 1.3 and select Open Outgoing Links dialog.

2 In the Outgoing Links Editor dialog box, in the Requirements tab, click New.
3 Enter these details to establish the link:

• Description:resultcounterSetsValue
• Document type: Excel Results
• Document: results.xlsx
• Location: counterSetsValue

3 Requirements-Based Verification

3-32

4 Click OK. The link is highlighted in the Links section of the Requirements Editor.

Create a Link by Using the API

Create the link from a requirement to the external results file by using the API:

1 From the MATLAB command prompt, enter:

externalSource.id = 'counterSetsValue';
externalSource.artifact = 'results.xlsx';
externalSource.domain = 'linktype_myexternalresults';

2 Open the requirement set and find the requirement related to the link:

reqSet = slreq.open('counter_req.slmx');
requirement = find(reqSet, 'Type', 'Requirement', 'SID', 4);

3 Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link from the requirement with SID 4 to the result for the test case in the
external result file called counterSetsValue. In Requirements Editor, the link appears in the
Links > Confirmed By section.

 Linking to a Result File

3-33

View the Verification Status
Update the verification information for the counterSetsValue test case based on the Excel status
log by updating the verification status for the requirement set.

You can update the verification status in the Requirements Editor by clicking Refresh . Ensure

that Columns + > Verification Status is selected to view the verification status for entire
requirement set.

3 Requirements-Based Verification

3-34

The verification status shows that one of the three requirements is verified.

You can also update the verification status and fetch the current status by entering the following at
the MATLAB command prompt:

updateVerificationStatus(reqSet)
status = getVerificationStatus(reqSet)

See Also

More About
• “Include Results from External Sources in Verification Status” on page 3-27

 Linking to a Result File

3-35

Integrating Results from a Custom-Authored MATLAB Script as
a Test

In this example, you link a requirement to a MATLAB script. The verification status in the Simulink
Requirements Editor reflects the test results. This example performs the steps described in “Linking
to a Test Script” on page 3-19. To run this example, click Open Example and run it. This example
uses:

• A requirements set file named counter_req.slreqx.
• A MATLAB script called runmytests.m that runs a test for the Counter class in Counter.m. The

test script contains custom methods that write results a TAP format to a file named results.tap.

Register the Link Type

Before creating the links, you need to register the link type from the requirements set file. Open the
requirements file counter_req.slreqx in the Requirements Editor:

reqSet = slreq.open('counter_req.slreqx');

Register the link type that is specific to the external test file. The domain registration needed for this
example is linktype_mymscripttap.m. To register the custom link type
linktype_mymscripttap.m, type:

rmi register linktype_mymscripttap;

The custom logic in the GetResultFcn function locates the test file that corresponds to the test case
and fetches the results from that test file. For more information about GetResultFcn, see “Links and
Link Types” on page 10-2.

Note: If the register command returns any warning, then you must unregister the file and run the
command again. To unregister the file, enter rmi unregister linktype_mymscripttap.

Create the Link

Make the struct containing properties of the external test. To create the link, at the command
prompt, enter:

externalSource.id = 'counterStartsAtZero';
externalSource.artifact = 'runmytests.m';
externalSource.domain = 'linktype_mymscripttap';

The requirement related to the link has its SID set to 2. To find the requirement related to the link,
enter:

3 Requirements-Based Verification

3-36

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);

To create the link, enter:

link = slreq.createLink(requirement, externalSource);

This command creates the link between the test case counterStartsAtZero and the requirement
with the SID of 2. In the Requirements Editor, the link appears in the Details pane, under Links.

View the Verification Status

To view the verification status, you need to first update the verification status for the requirement set.
At the MATLAB command prompt, type:

reqSet.updateVerificationStatus;

To see the verification status column in the Requirements Editor, ensure that Columns >
Verification Status is selected. After the update, fetch the verification status for the requirement:

status = reqSet.getVerificationStatus;

The Requirements Editor shows the verification status for entire requirements set that are passed or
failed.

 Integrating Results from a Custom-Authored MATLAB Script as a Test

3-37

The verification status for the requirements for the counterStartsAtZero is fully verified. Open
the Requirements Editor to see the verification status:

reqSet = slreq.open('counter_req.slreqx');

The verification status shows that out of three tests, one test passed. Click Refresh to see the
verification status for the requirements in the Requirements Editor.

3 Requirements-Based Verification

3-38

Cleanup

Clear open requirement sets and link sets, and close any open models without saving changes.
Unregister the link type.

slreq.clear;
bdclose('all');
rmi unregister linktype_mymscripttap;

See Also

More About
• “Include Results from External Sources in Verification Status” on page 3-27
• “Linking to a Test Script” on page 3-19

 Integrating Results from a Custom-Authored MATLAB Script as a Test

3-39

Integrating Results from an External Result file
In this example, you link a requirement to a result file in Excel Format. The verification status in the
Simulink Requirements Editor reflects the test results. This example performs the steps described in
“Linking to a Result File” on page 3-30. To run this example, click Open Example and run it. This
example uses:

• A requirements set file named counter_req.slreqx.
• A test results file named results.xlsx. This file contains a test case named

counterSetsValue.

Step 1: Register the Link Type.

Before creating the links, you need to register the link type from the requirements set file. Open the
requirements file counter_req.slreqx in the Requirements Editor:

reqSet = slreq.open('counter_req.slreqx');

Register the link type that is specific to the external results file. The domain registration needed for
this example is linktype_myexcelresults.m. To register the custom linktype link
type_myexcelresults.m, type:

rmi register linktype_myexcelresults;

The custom logic in the GetResultFcn function locates the result file that corresponds to the test
case and fetches the results from that result file. For more information about GetResultFcn, see
“Links and Link Types” on page 10-2. Note: If the register command returns any warning, then you
must unregister the file and run the command again. To unregister the file, enter rmi unregister
linktype_myexcelresults.

Step 2: Create the Link

Make the struct containing properties of the external result. To create the link, at the command
prompt, enter:

externalSource.id = 'counterSetsValue';
externalSource.artifact = 'results.xlsx';
externalSource.domain = 'linktype_myexcelresults';

The requirement related to the link has its SID set to 4. To find the requirement related to the link,
enter:

requirement = reqSet.find('Type', 'Requirement', 'SID', 4);

To create the link, enter:

3 Requirements-Based Verification

3-40

link = slreq.createLink(requirement, externalSource);

This command creates the link between the test case counterSetsValue and the requirement with
the SID of 4. In Requirements Editor, the link appears in the Details pane under Links.

Step 3: View the Verification Status

To view the verification status, you need to first update the verification status for the requirement set.
At the MATLAB command prompt, type:

 reqSet.updateVerificationStatus;

To see the verification status column in the Requirements Editor, select Columns > Verification
Status. After the update, fetch the verification status for the requirement:

status = reqSet.getVerificationStatus

status = struct with fields:
 total: 3
 passed: 1
 failed: 0
 unexecuted: 0
 justified: 0
 none: 2

Open the Requirements Editor to see the verification status:

reqSet = slreq.open('counter_req.slreqx');

The Requirements Editor shows the verification status for each requirement in the requirement set.

 Integrating Results from an External Result file

3-41

The verification status for requirements for the counterSetsValue is fully verified.

The verification status shows that out of three tests, one test passed. Click Refresh to see the
verification status for the requirements in the Requirements Editor.

Cleanup

Clear open requirement sets and link sets, and close any open models without saving changes.
Unregister the linktype.

3 Requirements-Based Verification

3-42

slreq.clear;
bdclose('all');
rmi unregister linktype_myexcelresults;

See Also

More About
• “Include Results from External Sources in Verification Status” on page 3-27
• “Linking to a Result File” on page 3-30

 Integrating Results from an External Result file

3-43

Integrating results from a custom authored MUnit script as a
test

In this example, you integrate the results from a MATLAB xml Unit test by linking to a test script. The
verification status in the Simulink Requirements Editor reflects the test results. To run this example,
click Open Example and run it. This example uses:

• A requirements set file named counter_req.slreqx.
• A xml Unit test file named myMUnitResults.xml. This file contains a test case named

testCounterStartsAtZero.

Step 1: Register the Link Type

Before creating the links, you need to register the link type from the requirements set file. Open the
requirements file counter_req.slreqx in the Requirements Editor.

reqSet = slreq.open('counter_req.slreqx');

Register the link type that is specific to the MUnit test file. The domain registration needed for this
example is linktype_mymljunitresults.m. To register the custom linktype
linktype_mymljunitresults.m, type:

rmi register linktype_mymljunitresults;

The custom logic in the GetResultFcn function locates the result file that corresponds to the test
case and fetches the results from that .xml file. For more information about GetResultFcn, see
“Links and Link Types” on page 10-2. The test is run with a customized test runner using XML
Plugin producing a JUnit output. The XML Plugin class creates a plugin that writes test results to a
file called myMUnitResults.xml.

Note: If the register command returns any warning, then you must unregister the file and run the
command again. To unregister the file, enter rmi unregister myMUnitResults.xml

Section 2: Create the Link

Make the struct containing properties of the external test. To create the link, at the command
prompt, enter:

externalSource.id = 'testCounterStartsAtZero';
externalSource.artifact = 'counterTests.m';
externalSource.domain = 'linktype_mymljunitresults';

The requirement related to the link has its SID set to 2. To find the requirement related to the link,
enter:

3 Requirements-Based Verification

3-44

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);

To create the link, enter:

link = slreq.createLink(requirement, externalSource);

This command creates the link between the test case testCounterStartsAtZero and the
requirement with the SID of 2. In Requirements Editor, the link appears in the Details pane, under
Links.

Section 3: View the Verification Status

To view the verification status, you need to first update the verification status for the requirement set.
At the MATLAB command prompt, type:

reqSet.updateVerificationStatus;

To see the verification status column in the Requirements Editor, ensure that Columns >
Verification Status is selected. After the update, fetch the verification status for the requirement:

status = reqSet.getVerificationStatus

status = struct with fields:
 total: 3
 passed: 0
 failed: 0
 unexecuted: 1
 justified: 0
 none: 2

The Requirements Editor shows the verification status for entire requirements set that are passed or
failed.

 Integrating results from a custom authored MUnit script as a test

3-45

The verification status for the requirements for the testCounterStartsAtZero is fully verified.
Open the Requirements Editor to see the verification status:

reqSet = slreq.open('counter_req.slreqx');

The Requirements Editor shows the verification status for each requirement in the requirement set.
The verification status for requirements for the counterSetsValue is fully verified.

The verification status shows that out of three tests, one test passed. Click Refresh to see the
verification status for the requirements in the Requirements Editor.

Cleanup

Clear open requirement sets and link sets, and close any open models without saving changes.
Unregister the link type.

3 Requirements-Based Verification

3-46

slreq.clear;
bdclose('all');
rmi unregister linktype_mymljunitresults;

See Also

More About
• “Include Results from External Sources in Verification Status” on page 3-27
• “Integrating Results from a MATLAB Unit Test Case” on page 3-25

 Integrating results from a custom authored MUnit script as a test

3-47

Fix Requirements-Based Testing Issues
This example shows how to address common traceability issues in model requirements and tests by
using the Model Testing Dashboard. The dashboard analyzes the testing artifacts in a project and
reports metric data on quality and completeness measurements such as traceability and coverage,
which reflect guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C. The dashboard widgets summarize the data so that you can track your requirements-
based testing progress and fix the gaps that the dashboard highlights. You can click the widgets to
open tables with detailed information, where you can find and fix the testing artifacts that do not
meet the corresponding standards.

Collect Metrics for the Testing Artifacts in a Project

The dashboard displays testing data for a model and the artifacts that the model traces to within a
project. For this example, open the project and collect metric data for the artifacts.

1 Open the project. At the command line, type dashboardCCProjectStart.
2 Open the dashboard. On the Project tab, click Model Testing Dashboard.
3 If you have not previously opened the dashboard for the project, the dashboard must identify the

artifacts in the project and trace them to the models. To run the analysis and collect metric
results, click Trace and Collect All.

4 In the Artifacts pane, the dashboard organizes unit models under the component models that
contain them in the model hierarchy. Artifacts such as requirements, test cases, and test results
appear under the unit models that they trace to. View the metric results for the model
db_DriverSwRequest. In the Artifacts pane, click the name of the model. The dashboard
populates the widgets with data from the most recent metric collection for the model.

3 Requirements-Based Verification

3-48

You can use the overlays in the Model Testing Dashboard to see if the metric results for a widget are
compliant, non-compliant, or generate a warning that the metrics results should be reviewed. Results
are compliant if they show full traceability, test completion, or model coverage. In the Overlays
section, ensure the Compliant and Non-Compliant buttons are selected. The overlay appears on the
widgets that have results in that category. You can see the total number of widgets in each
compliance category in the top-right corner of the dashboard.

To see the compliance thresholds for a metric, point to the overlay icon.

 Fix Requirements-Based Testing Issues

3-49

You can hide the overlay icons by clicking a selected category in the Overlays section.

For more information on the compliance thresholds for each metric, see “Model Testing Metrics”
(Simulink Check).

Link a Requirement to its Implementation in a Model

On the Artifacts panel, the Untraced folder shows artifacts that do not trace to the unit models in
the project. You can check the artifacts in this folder to see if there are any requirements that should
be implemented by the models but are missing links. For this example, link one of these requirements
to the model block that implements it and update the Artifacts panel to reflect the link.

1 In the Artifacts panel, navigate to the requirement Untraced > Functional Requirements >
db_req_func_spec.slreqx > Switch precedence.

2 Open the requirement in the Requirements Editor. On the Artifacts panel, double-click Switch
precedence. This requirement describes the order in which the cruise control system takes
action if multiple switches are enabled at the same time. Keep the Requirements Editor open
with the requirement selected.

3 Open the model db_Controller. To open the model from the Model Testing Dashboard, in the
Artifacts panel, expand the folder db_Controller > Design and double-click
db_Controller.slx.

4 The Model block DriverSwRequest references the model db_DriverSwRequest, which
controls the order in which the cruise control system takes action when the switches are enabled.
Link this model block to the requirement. Right-click the model block and select Requirements
> Link to Selection in Requirements Browser.

5 Save the model. On the Simulation tab, click Save.
6 Save the requirements set. In the Requirements Editor, click the Save icon.
7 To update the artifact traceability information, in the Model Testing Dashboard, click Trace

Artifacts.

The Artifacts panel shows the Switch precedence requirement under db_Controller > Functional
Requirements > db_req_func_spec.slreqx. Next, find traceability issues in the artifacts by
collecting metrics in the dashboard.

3 Requirements-Based Verification

3-50

Address Testing Traceability Issues

Open the dashboard for the unit db_DriverSwRequest by clicking the name of the unit in the
Artifacts panel. Because you changed the requirements file by adding a link, the dashboard widgets
are highlighted in gray to show that the results might represent stale data. To update the results for
the unit, click Collect Results.

The widgets in the Test Case Analysis section of the dashboard show data about the model
requirements, test cases for the model, and links between them. The widgets indicate if there are
gaps in testing and traceability for the implemented requirements.

Link Requirements and Test Cases

In the model db_DriverSwRequest, the Requirements Linked to Tests section shows that some
of the requirements in the model are missing links to test cases. Examine the requirements by
clicking one of the dashboard widgets. Then, use the links in the table to open the artifacts and fix the
traceability issues.

To see detailed information about the unlinked requirements, in the Requirements Linked to Tests
section, click the widget Unlinked. The table shows the requirements that are implemented in the
model, but do not have links to a test case. The table is filtered to show only requirements that are
missing links to test cases. For this example, link a test for the requirement Set Switch
Detection.

1 Open the requirement in the Requirements Editor. In the table, click Set Switch Detection.
2 In the Requirements Editor, examine the details of the requirement. This requirement describes

the behavior of the Set switch when it is pressed. Keep the requirement selected in the
Requirements Editor.

3 Check if there is already a test case for the switch behavior. To return to the metric results, at the
top of the Model Testing Dashboard, click db_DriverSwRequest. The Tests Linked to
Requirements section shows that one test case is not linked to requirements.

 Fix Requirements-Based Testing Issues

3-51

4 To see the unlinked test cases, in the Tests Linked to Requirements section, click Unlinked.
5 To open the test in the Test Manager, in the table, click the test case Set button. The test case

verifies the behavior of the Resume switch. If there were not already a test case for the switch,
you would add a test case by using the Test Manager.

6 Link the test case to the requirement. In the Test Manager, for the test case, expand the
Requirements section. Click Add > Link to Selected Requirement. The traceability link
indicates that the test case Set button verifies the requirement Set Switch Detection.

7 The metric results in the dashboard reflect only the saved artifact files. To save the test suite
db_DriverSwRequest_Tests.mldatx, in the Test Browser, right-click
db_DriverSwRequest_Tests and click Save.

8 Save the requirements file db_req_func_spec.slreqx. In the Requirements Editor, click the
Save button.

Next, update the metric data in the dashboard to see the effect of adding the link.

Update Metric Results in the Dashboard

Update the metric results in the Model Testing Dashboard so that they reflect the traceability link
between the requirement and the test case.

1 To analyze the artifact changes in the Model Testing Dashboard, click Trace Artifacts. The
button is enabled when there are changes in the project artifacts that the dashboard has not
analyzed.

2

At the top of the dashboard, the Stale Metrics icon indicates that at least one
metric widget shows stale data for the model. Widgets that show stale metric data appear
highlighted in grey. To refresh the widgets, re-collect the metric data for the model by clicking
Collect Results.

The Test Case Analysis widgets show that there are 11 remaining unlinked requirements. The Tests
Linked to Requirements section shows that there are no unlinked tests. Typically, before running
the tests, you investigate and address these testing traceability issues by adding tests and linking
them to the requirements. For this example, leave the unlinked artifacts and continue to the next step
of running the tests.

Test the Model and Analyze Failures and Gaps

After you create and link unit tests that verify the requirements, run the tests to check that the
functionality of the model meets the requirements. To see a summary of the test results and coverage
measurements, use the widgets in the Test Result Analysis section of the dashboard. The widgets
highlight testing failures and gaps. Use the metric results for the underlying artifacts to address the
issues.

Perform Unit Testing

Run the test cases for the model by using the Test Manager. Save the results as an artifact in the
project and review them in the Model Testing Dashboard.

1 Open the unit tests for the model in the Test Manager. In the Model Testing Dashboard, in the
Artifacts pane, expand the model db_DriverSwRequest. Expand the Test Cases folder and
double-click the test file db_DriverSwRequest_Tests.mldatx.

3 Requirements-Based Verification

3-52

2 In the Test Manager, click Run.
3 To use the test results in the Model Testing Dashboard, export the test results and save the file in

the project. On the Tests tab, in the Results section, click Export. Name the results file
Results1.mldatx and save the file under the project root folder.

The Model Testing Dashboard detects that you exported the results and automatically updates the
Artifacts panel to reflect the new results. The widgets in the Test Result Analysis section are
highlighted in grey to indicate that they are showing stale data. To update the data in the dashboard
widgets, click Collect Results.

Address Testing Failures and Gaps

In the model db_DriverSwRequest, the Model Test Status section indicates that one test failed
and one test was disabled during the latest test run. Open the tests and fix these issues.

1 To view the disabled test, in the dashboard, click the Disabled widget. The table shows the
disabled test cases for the model.

2 Open the disabled test in the Test Manager. In the table, click the test Decrement button
hold.

3 Enable the test. In the Test Browser, right-click the test case and click Enabled. Save the test
suite file.

4 To view the failed test, in the dashboard, click the Failed widget.
5 Open the failed test in the Test Manager. In the table, click the test Cancel button.
6 Examine the test failure in the Test Manager. You can determine if you need to update the test or

the model by using the test results and links to the model. For this example, instead of fixing the
failure, continue on to examine test coverage.

 Fix Requirements-Based Testing Issues

3-53

Check if the tests that you ran fully exercised the model design by using the coverage metrics. For
this example, the Model Coverage section of the dashboard indicates that some conditions in the
model were not covered. Place your cursor over the bar in the widget to see what percent of
condition coverage was achieved. For this example, 86.4% of decisions were covered by the tests and
4.55% of the decisions were justified in a coverage filter.

1 View the decision coverage details. Click the Decision bar.
2 In the table, expand the model artifact. The table shows the test case results for the model and

the results file that contains them. Open the results file Results1.mldatx in the Test Manager.
3 To see detailed coverage results, open the model in the Coverage perspective. In the Test

Manager, in the Aggregated Coverage Results section, in the Analyzed Model column, click
db_DriverSwRequest.

4 Coverage highlighting on the model shows the points that were not covered by the test cases. For
a point that is not covered, add a test that covers it. Find the requirement that is implemented by
the model element or, if there is none, add a requirement for it. Link the new test case to the
requirement. If the point should not be covered, justify the missing coverage by using a filter. For
this example, do not fix the missing coverage.

Once you have updated the unit tests to address failures and gaps, run the tests and save the results.
Then examine the results by collecting the metrics in the dashboard.

Iterative Requirements-Based Testing with the Model Testing Dashboard

In a project with many artifacts and traceability connections, you can monitor the status of the design
and testing artifacts whenever there is a change to a file in the project. After you change an artifact,
check if there are downstream testing impacts by updating the tracing data and metric results in the
dashboard. Use the tables to find and fix the affected artifacts. Track your progress by updating the
dashboard widgets until they show that the model testing quality meets the standards for the project.

3 Requirements-Based Verification

3-54

Change Tracking and Team-Based
Workflows

• “Requirements-Based Development in Projects” on page 4-2
• “Track Changes to Requirement Links” on page 4-3
• “Compare Requirements Sets” on page 4-8
• “Compare Link Sets” on page 4-9
• “Report Requirements Information” on page 4-10
• “Three-way AutoMerge Solution for Requirement Set and Link Set” on page 4-13
• “Merge Requirement Set and Link Set Files” on page 4-15

4

Requirements-Based Development in Projects
Projects help you organize and share files, and work with source control systems. Since
requirements-based development commonly involves multiple contributors and multiple files,
consider organizing your models, requirements, links, and tests in a project. For more information,
see “What Are Projects?”.

Organizing Requirements, Models, and Tests
To facilitate multiple individuals working on a project in source control, consider the following:

• Store models, requirements, and tests in separate folders within a project.
• Add folders to the project path, so that link sources and destinations resolve when you open a

requirements set or model.
• Use a source control tool, such as Git, to collaborate on projects and project files.
• When you link requirements to a model (or code, test, etc.) the traceability data file saves in the

same folder as the model. Store traceability data files in a folder with the respective model, code,
or test.

• Opening a requirement set in a project loads other requirement and link sets in the project.

This is a simple project with a model, several tests, and a requirement set.

If your project includes shared library models, requirements sets, requirements links, and supporting
files, you can create requirements links between your local models and shared requirements. You can
also create requirements between your local requirements and shared models and supporting files.
Shared library requirements data is integrated into your local requirements data.

You can refresh requirement link information by using the slreq.refreshLinkDependencies
command.

4 Change Tracking and Team-Based Workflows

4-2

Track Changes to Requirement Links
After you “Author Requirements in Simulink” on page 1-2 and create links between design elements
and your requirements, Simulink Requirements tracks the links and detects when linked
requirements change. Track change information from the Requirements Editor or in the Traceability
Matrix. You can then resolve change issues or clear changes that have no impact on the requirement
status.

Enable Change Tracking for Requirement Links
To enable change tracking for requirement links:

1 Open the Requirements Editor. From your Simulink model, in the Apps tab, click Requirements
Manager. In the Requirements tab, click Requirements Editor. Alternatively, at the MATLAB
command prompt, enter:

slreq.editor
2 Open a requirement set.
3

Ensure that Information > Change Information is selected.

When you enable Change Information, this setting stays enabled even after you close the
Requirements Editor.

Alternatively, you can enable change tracking for requirement links from the Requirements
Perspective. Right-click an item in the Requirements Perspective and select Change Information.

Review Changes to Requirements
Requirements can be linked to other types of items. For a full list of linkable items, see “Linkable
Items” on page 2-32. When you change a requirement that is linked to another item, the link is
highlighted in the Requirements Editor and Traceability Matrix to indicate that it has a change issue.
After you “Enable Change Tracking for Requirement Links” on page 4-3, you can view the change
issues associated with a particular requirement from the Requirements Editor or the Traceability
Matrix.

Note Simulink Requirements only provides change tracking information for unresolved links if the
linked requirement is valid. For more information on why a link might become unresolved, see
“Resolve Links” on page 2-36.

In the Requirements Editor, click Show Requirements. The linked requirements with changes are
highlighted in red. When you select a requirement, the associated link is also highlighted in red in the
Details pane, under Links. To view the change issue, select a requirement, and, under Links, point
to the link, then click the link icon () to the right of the linked item.

 Track Changes to Requirement Links

4-3

In the Traceability Matrix, click Highlight Missing Links > Highlight Changed Links to highlight
in red the row, column, and cell associated with the linked requirement that was changed. To view
changes to the linked requirement in the Requirements Editor, select the cell and, in the dialog box
that appears, click the requirement hyperlink next to Source or Destination. To view the change
issue, click the link hyperlink next to Link. To learn more about using the Traceability Matrix to find
change issues, see “View and Clear Change Issues for Links” on page 2-15.

4 Change Tracking and Team-Based Workflows

4-4

Resolve Change Issues
The Requirements Editor displays change information, including change issues, for each link. Click
Show Links and, in the Details pane, expand Change Information. Simulink Requirements
compares the stored timestamp and revision to the current timestamp and revision for the linked
requirement. If you change the requirement after you create the link, or after the last time you
changed it, then the Requirements Editor indicates a change issue.

You can resolve change issues from the Requirements Editor or the Traceability Matrix. If a change
has no impact, you can clear the change issue. The link change information is updated with the
current timestamp and revision for the requirement. If the change issue affects the status of your
requirements, you can change the model, the requirements, the test cases, or the links themselves to
resolve the revision discrepancy, and then clear the issue.

 Track Changes to Requirement Links

4-5

In the Requirements Editor, links with change issues are highlighted in red when Show Links is
selected. To clear a change issue, select the link and, in the Details pane, under Change
Information, click Clear Issue.

In the Traceability Matrix, you can highlight links with change issues by selecting Highlight
Missing Links > Highlight Changed Links. To clear the change issue, select the cell containing
the link and, in the toolstrip, click Clear Change Issue.

Clear Change Issues for Multiple Links

You can clear change issues for multiple links at a time in the Requirements Editor or in the
Traceability Matrix.

In the Requirements Editor, select multiple links by pressing Shift or Ctrl and clicking the links.
Right-click one of the selected links and click Clear Issue from the context menu. To clear all change
issues for an entire link set, select the link set and, in the Details pane, under Change Information,
click Clear All. You can also right-click the link set and select Clear All Change Issues from the
context menu.

In the Traceability Matrix, select multiple cells by clicking and dragging, or pressing Shift or Ctrl,
click the cells, and click Clear Change Issue in the toolstrip.

Add Comments to Links
When you resolve change issues, it is good practice to add a comment to the link describing the
action that you took. Each link has a Comments property. When you clear a change issue in either

4 Change Tracking and Team-Based Workflows

4-6

the Requirements Editor or Traceability Matrix, a dialog box appears and you are prompted to add a
comment.

To add an additional comment:

1 In the Requirements Editor, click Show Links.
2 Select the link.
3 In the Details pane, under Comments, click Add Comment.

Manually Check for Using Links Change Tracking
Change tracking information is automatically updated in the Requirements Editor, but it can also be
manually refreshed. To refresh the change tracking information:

•
In the Requirements Editor, click Refresh.

• In the Traceability Matrix, click Update.

In the Traceability Matrix, change tracking information must be refreshed manually.

See Also

More About
• “Create a Project from a Model”
• “Track Requirement Links with a Traceability Matrix” on page 2-5

 Track Changes to Requirement Links

4-7

Compare Requirements Sets
To compare differences between two requirements sets, use the “Compare Revisions” tool.

Compare Two .slreqx Simulink Requirements Sets
If you have two versions of a .slreqx Simulink requirements set file, use the Simulink “Compare
Revisions” tool to find any differences between the two files.

Select Two Requirements Set Files to Compare

1 In the Current Folder pane of MATLAB, or in the Project Files View of your project, select the
first file for comparison.

2 In the Current Folder pane of MATLAB, or in the Project Files View of your project, press Ctrl,
and then click the second file for comparison.

3 Right-click either file and select Compare Selected Files/Folders.

Select One File to Compare

1 In the Current Folder pane of MATLAB, right-click first file and select Compare Against >
Choose.

2 Select the second file for comparison and select Simulink Requirements Comparison as the
Comparison type.

The Simulink comparison tool shows the differences between the two .slreqx requirements sets.
The comparison shows which specific requirements in a requirement set changed and which fields of
each requirement changed.

Note The comparison tool shows only changes in saved .slreqx requirements sets. Changes that
have occurred in memory but are not yet saved to file are not shown.

To view a requirements item in the Requirements Editor, highlight the requirements item and click
Highlight Now. The requirements item from the right comparison pane opens in the Requirements
Editor. If you select Always Highlight, the Requirements Editor opens to the selected requirements
item whenever you click one.

Review Changes in Source-Controlled Files
If you use a separate change management tool to manage changes to your projects, you can use the
Simulink comparison tool with your source-controlled Simulink Requirements files. For more
information, see “Compare Revisions”.

4 Change Tracking and Team-Based Workflows

4-8

Compare Link Sets
If you have two versions of a .slmx Simulink link set file, use the Simulink “Compare Revisions” tool
to find any differences between the two files.

Select Two Link Set Files to Compare

1 In the Current Folder pane of MATLAB, or in the Project Files View of your project, select the
first file for comparison.

2 In the Current Folder pane of MATLAB, or in the Project Files View of your project, press Ctrl,
and then click the second file for comparison.

3 Right-click either file and select Compare Selected Files/Folders.

Select One File to Compare

1 In the Current Folder pane of MATLAB, right-click the first file and select Compare Against >
Choose.

2 Select the second file for comparison and select Simulink Requirements Comparison as the
Comparison type.

The Simulink comparison tool shows the differences between the two .slmx link set files. The
comparison shows which specific links in a link set changed and which fields of each link changed.

Note The comparison tool shows only changes in saved .slmx link sets. Changes that have occurred
in memory but are not yet saved to file are not shown.

To view a link in the Links View of the Requirements Editor, highlight the link and click Highlight
Now. The link from the right comparison pane opens in the Links View of the Requirements Editor. If
you select Always Highlight, the Requirements Editor opens to the selected link item whenever you
click one.

 Compare Link Sets

4-9

Report Requirements Information
To document your requirements for review, you can create a report for one or more requirement sets.
You can select the requirements information to contain in the report, including:

• Navigable links to model entities and other requirements
• Requirements change and revision information
• Implementation and Verification status summaries

You can create reports in .docx (Microsoft Word), PDF and HTML formats. If you select multiple
requirement sets for reporting, the information is contained in a single report.

You can create reports using the Report Generation Options dialog box or programmatically by
using the slreq.generateReport function.

4 Change Tracking and Team-Based Workflows

4-10

To create a report by using the Report Generation Options dialog box:

1 Right-click a requirement set in the Requirements Editor or Requirements Browser, and select
Generate Report.

To create a report with multiple requirements sets, click Export > Generate Report.

 Report Requirements Information

4-11

The Report Generation Options dialog box opens.
2 Set the report file name and location by clicking the Select button next to the file name.
3 Select report content options.
4 Select requirement sets to include in the report. The dialog box displays requirement sets that

are loaded in memory. To include a requirement set that does not appear in the list, first open the
requirement set using the Requirements Editor.

5 Click Generate Report.

The Report Appendix provides summaries of all the change issues and requirement set artifacts that
you create the report for.

Report Navigation Links
The requirements report contains links you can use to navigate to model items and other
requirements. For example, this requirement is implemented by two model entities, and is derived
from two requirements. Hold Ctrl and click a link to open the linked item.

If you use slreq.generateReport to generate a report as a Microsoft Word document, you will
need to manually update the Table of Contents. Open the report, select the contents, and press F9.

See Also
slreq.generateReport | slreq.getReportOptions

4 Change Tracking and Team-Based Workflows

4-12

Three-way AutoMerge Solution for Requirement Set and Link
Set

If multiple users are working on the same set of requirement set and link set files in Git™, you can
merge the changes into a single file by using the mlAutoMerge.

Configure Git environment for AutoMerge
You can follow the process described in “Customize External Source Control to Use MATLAB for Diff
and Merge” with Simulink Requirements to merge changes in different branches in Git.

To use mlAutoMerge with the Git tool:

1 At the MATLAB command prompt, enter:

comparisons.ExternalSCMLink.setupGitConfig()
2 Create a project and add the project to Git. For more information, see “Add a Project to Source

Control”.

Select and Merge Branches in Git
To select a branch and merge the changes:

1 From within your Git repository folder, select Branches from the toolstrip.
2 From Branches drop-down list, select a branch from which you want to merge the changes.
3 Click Merge to merge from the selected branch.

Note After merging of a requirement set file is complete, a log file
<requirement_set_name>_merge_<timestamp>.log is generated in the Git repository
folder. The log file contains changes in the SID values of the requirements during merging of
requirement set (slreqx) files.

Note If there are no conflicts in merging the branches, then merge modifies the target file. If,
the changes conflict, you must view and resolve the conflicts manually.

Limitations
1 Git is the only supported source control tool.
2 You must resolve merge conflicts manually.

See Also

More About
• “Branch and Merge with Git”
• “Create a New Project From a Folder”

 Three-way AutoMerge Solution for Requirement Set and Link Set

4-13

See Also

4 Change Tracking and Team-Based Workflows

4-14

Merge Requirement Set and Link Set Files
This example explains how to merge changes from multiple requirement set and link set files.

Merge Files with No Conflicts

If you are editing a requirements file which is also concurrently modified by another user, you can get
the changes from the other user using Git™ merge. If you want to merge the files, you first have to
make sure you have Git and run the comparisons.ExternalSCMLink.setupGitConfig
command.

To merge a file without any conflict:

1. At the MATLAB® command prompt, enter:

slreqCCMergeSetup

This helps you to set up two branches, User1Feature and User2Feature, where User2Feature is the
current active branch.

2. To inspect the changes in each branch, switch to that branch and right-click the
crs_req_func_spec.slreqx file in the current folder browser and select Source Control >
Compare To Revision and select latest two revisions for comparison.

3. To merge changes from User1Feature branch to User2Feature branch, set User2Feature branch as
the current branch and select User1Feature branch in Branch browser. Then click Merge to execute
the merge operation.

 Merge Requirement Set and Link Set Files

4-15

4. To confirm if the changes are merged successfully into User2Feature branch, select the
crs_req_func_spec.slreqx file in current folder browser and click Source Control > Compare
to Ancestor.

4 Change Tracking and Team-Based Workflows

4-16

Merge Files with Conflicts

If the merged file has conflicts, you can view the file and resolve the conflicts manually. To resolve a
merge conflict:

1.At the MATLAB® command prompt, enter:

slreqCCMergeConflictSetup

This helps you to set up two branches, User1Feature and User2Feature, where User2Feature is the
current active branch.

2. To inspect the changes in each branch, switch to that branch and right-click the
crs_req_func_spec.slreqx file in the current folder browser and select Source Control >
Compare To Revision and select latest two revisions for comparison.

3. Select the User1Feature branch and click Merge to execute merge command. Observe that
MATLAB reports a conflict.

4. The Merge tool automatically merges non-conflicting changes. To view the conflicting changes,
right-click the crs_req_func_spec.slreqx file in current folder browser and click Source
Control > View Conflicts.

5. To manually resolve conflicts, open the requirement set in Requirements Editor and make the
changes.

6. Right-click the crs_req_func_spec.slreqx file and select Source Control > Mark Conflicts
Resolved.

 Merge Requirement Set and Link Set Files

4-17

7. Click Commit to merge the changes.

8. Right-click the crs_req_func_spec.slreqx file and select Source Control > Compare to
Ancestor to observe the merged changes.

See Also

• “Three-way AutoMerge Solution for Requirement Set and Link Set” on page 4-13

4 Change Tracking and Team-Based Workflows

4-18

Requirements Management Interface
Setup

• “Configure Simulink Requirements for Interaction with Microsoft Office and IBM Rational
DOORS” on page 5-2

• “Requirements Link Storage” on page 5-4
• “Supported Requirements Document Types” on page 5-8
• “Requirements Settings” on page 5-10
• “Migrating Requirements Management Interface Data to Simulink® Requirements™”

on page 5-16

5

Configure Simulink Requirements for Interaction with
Microsoft Office and IBM Rational DOORS

Simulink Requirements communicates with external tools such as Microsoft Office and IBM Rational
DOORS so that you can import requirements and establish links between requirements and Model-
Based Design items such as Simulink model elements and tests.

You can configure MATLAB and Simulink to:

• Use ActiveX® controls for navigation from Microsoft Office documents to Simulink models (PC
only).

• Use Simulink Requirements with IBM Rational DOORS software (Windows only).
• Use Simulink Requirements with IBM DOORS Next web server.

Configure Simulink Requirements for Microsoft Office
When you work with older requirements documents that include ActiveX controls inserted by
previous versions of Simulink, register ActiveX controls. More recent Simulink versions use HTTP
hyperlinks to navigate from Microsoft Office to Simulink.

1 Run MATLAB as an administrator.
2 At the command prompt, enter:

rmi setup
3 Press Y to register the current MATLAB installation as an ActiveX Automation Server.

Configure Simulink Requirements for IBM Rational DOORS
You must configure your IBM Rational DOORS installation to communicate with MATLAB.

1 Run MATLAB as an administrator.
2 At the command prompt, enter:

rmi setup doors
3 Press Y to complete the ActiveX Automation Server setup.
4 Verify the path to your IBM Rational DOORS installation. The setup utility will list DOORS client

installations found on your system. You can select a file path from the list or use the option to
manually enter the path to the folder.

5 If the DOORS installation was not detected in the previous step, press 2 to enter the installation
folder.

Tip If Simulink Requirements still does not communicate after performing this setup, try the setup
process described in “Configure Simulink Requirements for IBM Rational DOORS Software” on page
7-2.

Configure Simulink Requirements for IBM DOORS Next
You do not need to use rmi setup for DOORS Next integration. However, if you use rmi setup for
Microsoft Office or DOORS 9 integration, you can continue with the setup for DOORS Next. The
utility prompts you to enter your DOORS Next server address and port number. You can enter the

5 Requirements Management Interface Setup

5-2

values at that point, and you can easily adjust those in each future MATLAB session. To read more
about configuring MATLAB and Simulink with IBM DOORS Next, see “Link and Trace Requirements
with IBM DOORS Next” on page 7-26.

Install the Simulink Requirements Widget in IBM DOORS Next

The Simulink Requirements widget enables you to propagate selection information from IBM
DOORS Next.

1 In the Windows File Explorer, navigate to the folder toolbox\slrequirements
\slrequirements\resources in your MATLAB installation.

2 Copy the dngsllink_config folder into the extensions subfolder of your IBM DOORS Next
installation. The location of this folder depends on your server version.

3 Configure the DOORS Next server for custom extensions, and then restart the server. For details
on this process, see the IBM RM Extensions Hosting Guide

4 After copying the dngsllink_config folder to your server, add the Simulink Requirements
widget to the Mini Dashboard in DOORS Next. In the Mini Dashboard, select Add Widget >
Add OpenSocial Gadget.

5 Specify the URL to dngsllink_config.xml that corresponds to the extensions\
dngsllink_config subfolder in your server installation folder.

For example, if you have Liberty server installed on Windows, the extensions subfolder may be
located in: C:/Program Files/IBM/JazzTeamServer/server. The corresponding URL for
adding the widget will be: https://JAZZSERVERNAME:9443/extensions/
dngsllink_config/dngsllink_config.xml.

6 Click Add Widget. The Mini Dashboard now displays the Simulink Requirements widget.

See Also
slreq.dngConfigure

More About
• “Configure Simulink Requirements for IBM Rational DOORS Software” on page 7-2

 Configure Simulink Requirements for Interaction with Microsoft Office and IBM Rational DOORS

5-3

https://jazz.net/wiki/bin/view/Main/RMExtensionsHostingGuide602

Requirements Link Storage
When you create a link from a Model-Based Design item to a requirement, Simulink Requirements
stores the link information in an external .slmx file with the same base file name and in the same
folder as the artifact that contains the link source.

When you create a link from a Simulink model to a requirement, you can store the links internally to
the model or as an external file. External storage does not modify your model when you create or
modify requirements links.

To specify the requirements link storage setting:

1 Open the Requirements Settings. In the Apps tab, click Requirements Viewer. In the
Requirements Viewer tab, click Link Settings.

2 In the Requirements Settings dialog box, select the Storage tab.
3 Under Default storage location for traceability data:

• To enable internal storage, select Store internally (embedded in Simulink diagram file).
• To enable external storage, select Store externally (in a separate *.slmx file).

This setting applies immediately, and applies to new models and existing models that do not contain
requirements links.

If you open a model that already has requirements links, the RMI uses the storage mechanism you
used previously with that model, regardless of what your default storage setting is.

When links are stored with the model (internal storage), the time stamp and version number of the
model changes every time you modify your requirements links.

Save Requirements Links in External Storage
The Requirements Management Interface (RMI) stores externally stored requirements links in a file
whose name is based on the model file. Because of this, before you create requirements links to be
stored in an external file, you must save the model with a value file name.

You add, modify, and, delete requirements links in external storage the same way you do when the
requirements links are stored in the model file. The main difference is when you change externally
stored links, the model file does not change. The asterisk in the title bar of the model window that
indicates a model has unsaved changes does not appear when you change requirements links.
However, when you close the model, the RMI asks if you want to save the requirements links
modifications.

There are several ways to save requirements links that are stored in an external file, as listed in the
following table.

Select... To...
In the Apps tab, click Requirements Manager.
In the Requirements tab, click Save All.

Save the requirements links in an external file
using a file name that you specify. The model
itself is not saved.

5 Requirements Management Interface Setup

5-4

Select... To...
In the Apps tab, click Requirements Manager.
In the Requirements tab, click Save Links
Only.

Save the requirements links in an external file
using the default file name, model_name.slmx,
or to the previously specified file. The model itself
is not saved.

In the Simulation tab, click Save. Save the current requirements links to an
external file named model_name.slmx, or to the
previously specified file. Model changes are also
saved.

In the Simulation tab, Save > Save As Rename and save the model and the external
requirements links. The external file is saved as
new_model_name.slmx.

Load Requirements Links from External Storage
RMI attempts to load internally stored model requirements links from an .slmx file — either the
default file or a previously specified file. If no .slmx file is found, RMI does not display requirements
links.

Your links may be stored in an external file. To load links:

1 In the Apps tab, click Requirements Viewer.
2 In the Requirements Viewer tab, click Load Links.
3 Select the file from which to load the requirements links.
4 Click Open to load the links from the selected file.

Save changes to your links before loading links from another file.

Move Internally Stored Requirements Links to External Storage
If you have a model with requirements links that are stored with the model, you can move those links
to an external file. When you move internally stored links to a file, the RMI deletes the internal links
data from the model file and saves the model. From this point on, the data exists only in the external
file.

1 Open the model that contains internally stored requirements links.
2 In the Apps tab, open Requirements Manager.
3 In the Requirements tab, ensure Layout > Requirements Browser is selected.
4 In the Requirements pane, in the View drop-down menu, select Links.
5 In the Requirements tab, click Link Settings > Save Links As Link Set File.
6 Choose a file name for the new external .slmx file and click OK.

Move Externally Stored Requirements Links to the Model File
If you have a model with requirements links that are stored in an external file, you can move those
links to the model file.

 Requirements Link Storage

5-5

1 Open the model that has externally stored requirements links.
2 Make sure the right set of requirements links are loaded from the external file.
3 In the Apps tab, open Requirements Manager.
4 In the Requirements tab, in the Requirements pane, select Links from the View drop-down.
5 In the Requirements tab, select Link Settings > Save Links in Model File.

An asterisk appears next to the model name in the title bar of the model window indicating that
your model now has unsaved changes.

6 Save the model with the requirements links.

From this point on, the RMI stores requirements links internally, in the model file. When you add,
modify, or delete links, the changes are stored with the model, even if the Default storage location
for requirements links data option is set to Store externally (in a separate *.slmx file).

External Storage
The first time you create links to requirements in a Simulink model, the RMI uses your designated
storage preference. When you reopen the model, the RMI loads the internally stored links, or the
links from the external file, as long as the file exists with the same name and location as when you
last saved the links.

The RMI allows you to save your links file as a different name or in a different folder. However, when
you start with the links file in a nondefault location, you must manually load those links into the
model. After you load those links, the RMI associates that model with that file and loads the links
automatically when you load this model next time.

As you work with your model, the RMI stores links using the same storage as the existing links. For
example, if you open a model that has internally stored requirements links, new links are also stored
internally. This is true even if your preference is set to external storage.

Requirements links must be stored either with the model or in an external file. You cannot mix
internal and external storage within a given model.

To see an example of the external storage capability using a Simulink model, at the command line,
enter:

slvnvdemo_powerwindow_external

Guidelines for External Storage of Requirements Links
Follow these guidelines when storing requirements links in an external file.

• When sharing models, use the default name and location.

By default, external requirements are stored in a file named model_name.slmx in the same
folder as the model. If you give your model to others to review the requirements traceability, give
the reviewer both the model and .slmx files. That way, when you load the model, the RMI
automatically loads the links file.

• Do not rename the model outside of Simulink.

5 Requirements Management Interface Setup

5-6

If you need to re-save the model with a new name or in a different location, in the Simulation tab,
click Save As. Selecting this option causes the RMI to re-save the corresponding .slmx file using
the model name and in the same location as the model.

• Be aware of unsaved requirements changes.

If you create new requirements links that are stored externally, your model does not indicate that
it has unsaved changes, because the model file itself has not changed. You can explicitly save the
links, or, when you close the model, the RMI prompts you to save the requirements links. When
you save the model, the RMI saves the links in the external file.

Copying Model Objects and their Linked Requirements
When you copy Simulink and Stateflow objects, their associated requirements links are duplicated by
default. Alternatively, you can choose to duplicate requirements links only when the links are
highlighted in the Simulink model by following this process:

1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements pane, in the View drop-down menu, select Links.
4 In the Requirements tab, click Link Settings > Default Link Storage.
5 Select Duplicate links only when model requirements are highlighted.

Alternatively, you can navigate to Apps and open Requirements Viewer, then click Link Settings
to view the same setting.

If you select Duplicate links only when model requirements are highlighted, your links will be
duplicated when you copy model objects and, in the Requirements or Requirements Viewer tab,
the Highlight links button is selected. If you don't want to duplicate links when copying model
objects, ensure that Highlight links is not selected.

To change this setting programmatically, see rmipref and its preference “DuplicateOnCopy”.

 Requirements Link Storage

5-7

Supported Requirements Document Types
The Requirements Management Interface (RMI) supports linking with external documents of the
types listed in the table below. For each supported requirements document type, the table lists the
options for requirements locations within the document.

If you would like to implement linking with a requirements document of a type that is not listed in the
table below, you can register a custom requirements document type with the RMI. For more
information, see “Create a Custom Requirements Link Type” on page 10-8.

Requirements
Document Type

Location Options

Microsoft Word 2003
or later

• Named item — A bookmark name. The RMI links to the location of that
bookmark in the document. The most stable location identifier because the
link is maintained when the target content is modified or moved.

• Search text — A search string. The RMI links to the first occurrence of
that string in the document. This search is not case sensitive.

• Page/item number — A page number. The RMI links to the top of the
specified page.

Excel 2003 or later • Named item — A named range of cells. The RMI links to that named item
in the workbook. The most stable location identifier because the link is
maintained when the target content is modified or moved.

• Search text — A search string. The RMI links to the first occurrence of
that string in the workbook. This search is not case sensitive.

• Sheet range — A cell location in a workbook:

• Cell number (A1, C13)
• Range of cells (C5:D7)
• Range of cells on another worksheet (Sheet1!A1:B4)

The RMI links to that cell or cells.
IBM Rational DOORS Page/item number — The unique numeric ID of the target DOORS object.

The RMI links to that object.
Text • Search text — A search string. The RMI links to the first occurrence of

that string within the document. This search is not case sensitive.
• Line number — A line number. The RMI links to the beginning of that

line.
HTML You can link only to a named anchor.

For example, in your HTML requirements document, if you define the anchor

 ...contents...

in the Location field, enter valve_timing or, from the document index,
choose the anchor name.

Select the Document Index tab in the “Outgoing Links Editor” on page 10-
6 to see available anchors in an HTML file.

5 Requirements Management Interface Setup

5-8

Requirements
Document Type

Location Options

Web browser URL The RMI can link to a URL location. In the Document field, type the URL
string. When you click the link, the document opens in a Web browser:

• Named item — An anchor name. The RMI links to that location on the
Web page at that URL.

PDF Navigation will open a PDF document but will not scroll to a specific page or
bookmark.

The RMI cannot create a document index of bookmarks in PDF files.

 Supported Requirements Document Types

5-9

Requirements Settings
You can manage your RMI preferences in the Requirements Settings dialog box. These settings are
global and not associated with a particular model. To open the Requirements Settings dialog box, in
the Apps tab, click Requirements Viewer. In the Requirements Viewer tab, click Link Settings.

In this dialog box, you can select the:

• Storage tab to set the default way in which the RMI stores requirements links in a model. For
storage information, see “Requirements Link Storage” on page 5-4.

• Selection Linking tab to set the options for linking to the active selection in a supported
document. For setting information, see “Selection Linking Tab” on page 5-10.

• Filters tab to set the options for filtering requirements in a model. For filtering information, see
“Configure Requirements Filtering” on page 5-15.

• Report tab to customize the requirements report without using the Report Generator. For setting
information, see “Customize Requirements Report Using the RMI Settings” on page 11-19.

Selection Linking Tab
In the Requirements Settings dialog box, on the Selection Linking tab, use the following options for
linking to the active selection in a supported document.

Options Description
For linking to the active selection within an external document:
Enabled applications Enable selection-based linking shortcuts to

Microsoft Word, Excel, or DOORS applications.
Document file reference Select type of file reference. For information on

what settings to use, see “Document Path
Storage” on page 11-35.

Apply this keyword to new links Enter text to attach to the links you create. For
more information about user tags, see “Filter
Requirements with User Tags” on page 5-11.

When creating selection-based links:
Modify destination for bidirectional linking Creates links both to and from selected link

destination.
Store absolute path to model file Select to store the absolute path to the Simulink

model file.
Use custom bitmap for navigation controls in
documents

Select and browse for your bitmap. You can use
your own bitmap file to control the appearance of
navigation links in your document.

Use ActiveX buttons in Word and Excel
(backward compatibility)

Select to use legacy ActiveX controls to create
links in Microsoft Word and Excel applications.
By default, if not selected, you create URL-based
links.

5 Requirements Management Interface Setup

5-10

Filter Requirements with User Tags
• “User Tags and Requirements Filtering” on page 5-11
• “Apply a User Tag to a Requirement” on page 5-11
• “Filter, Highlight, and Report with User Tags” on page 5-12
• “Apply User Tags During Selection-Based Linking” on page 5-14
• “Configure Requirements Filtering” on page 5-15

User Tags and Requirements Filtering

User tags are user-defined keywords that you associate with specific requirements. With user tags,
you can highlight a model or generate a requirements report for a model in the following ways:

• Highlight or report only those requirements that have a specific user tag.
• Highlight or report only those requirements that have one of several user tags.
• Do not highlight and report requirements that have a specific user tag.

Apply a User Tag to a Requirement

To apply one or more user tags to a newly created requirement:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 To open the requirements document, right-click the Airflow calculation subsystem and select

Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens with the details about the requirement that you
created.

 Requirements Settings

5-11

4 In the Keywords field, enter one or more keywords, separated by commas, that the RMI can use
to filter requirements. In this example, after design, enter a comma, followed by the user tag
test to specify a second user tag for this requirement.

User tags:

• Are not case sensitive.
• Can consist of multiple words. For example, if you enter design requirement, the entire

phrase constitutes the user tag. Separate user tags with commas.
5 Click Apply or OK to save the changes.

Filter, Highlight, and Report with User Tags

The slvnvdemo_fuelsys_officereq model includes several requirements with the user tag
design. This section describes how to highlight only those model objects that have the user tag,
test.

1 Remove highlighting from the slvnvdemo_fuelsys_officereq model. In the Apps tab, click
Requirements. In the Requirements tab, click Highlight Links.

2 Select Link SettingsLinking Options.
3 In the Requirements Settings dialog box, click the Filters tab.

5 Requirements Management Interface Setup

5-12

4 To enable filtering with user tags, click the Filter links by user tags when highlighting and
reporting requirements option.

5 To include only those requirements that have the user tag, test, enter test in the Include
links with any of these tags field.

6 Click Close.
7 In the Requirements tab, click Highlight Links.

The RMI highlights only those model objects whose requirements have the user tag test, for
example, the MAP sensor.

8 Reopen the Requirements Settings dialog box to the Filters tab.
9 In the Include links with any of these tags field, delete test. In the Exclude links with any

of these tags field, add test.

In the model, the highlighting changes to exclude objects whose requirements have the test
user tag. The MAP sensor and Test inputs blocks are no longer highlighted.

10 In the Requirements tab, select Share > Generate Model Traceability Report.

The report does not include information about objects whose requirements have the test user
tag.

 Requirements Settings

5-13

Apply User Tags During Selection-Based Linking

When creating a succession of requirements links, you can apply the same user tags to all links
automatically. This capability, also known as selection-based linking, is available only when you are
creating links to selected objects in the requirements documents.

When creating selection-based links, specify one or more user tags to apply to requirements:

1 In the Requirements Viewer tab, click Link Settings.
2 Select the Selection Linking tab.

3 In the Apply this keyword to new links field, enter one or more user tags, separated by
commas.

The RMI applies these user tags to all new selection-based requirements links that you create.
4 Click Close to close the Requirements Settings dialog box.
5 In a requirements document, select the specific requirement text.
6 Right-click a model object and select Requirements.

The selection-based linking options specify which user tags the RMI applies to the link that you
create. In the following example, you can apply the user tags design, general, and reqtslink
to the link that you create to your selected text.

5 Requirements Management Interface Setup

5-14

Configure Requirements Filtering

In the Requirements Settings dialog box, in the Filters tab, use the following options for filtering
requirements in a model.

Option Description
Filter links by keyword when highlighting
and reporting requirements

Enables filtering for highlighting and reporting,
based on specified user tags.

Include links with any of these tags Includes information about requirements that
have the specified user tags. Separate multiple
user tags with commas.

Exclude links with any of these tags Excludes information about requirements that
have the specified user tags. Separate multiple
user tags with commas or spaces.

Apply same filters to link labels Disables link labels in context menus if one of the
specified filters are satisfied, for example, if a
requirement has a designated user tag.

Apply same filters in consistency checking Includes or excludes requirements with specified
user tags when running a consistency check
between a model and its associated requirements
documents.

Under Link type filters, Disable
synchronization item links in context menus

Disables links to DOORS surrogate items from
the context menus when you right-click a model
object. This option does not depend on current
user tag filters.

 Requirements Settings

5-15

Migrating Requirements Management Interface Data to
Simulink® Requirements™

This example demonstrates the basic steps to update Requirements Management Interface (RMI)
links to the format used by the Requirements Editor, and the Requirements Browser in the model
canvas. Legacy RMI data consists of traceability link information, stored in a separate .req file, or
embedded in a Simulink® model.

With Simulink Requirements, you can view requirements and links in the model canvas, while
preserving existing links from your design elements to external documents. Additionally, you can
create requirements, and establish relationships between requirements, model entities, and test
cases.

This example uses Windows®.

Workflow

In this example:

1 You start with a model that has links to requirements in external documents.
2 You create a new requirement set.
3 You import the requirements from the external documents, creating requirements in the set that

reference the external documents.
4 You update the model link destinations to the imported requirements.

Create a Requirement Set

Open the Requirements Editor.

slreq.editor

Create a new requirement set:

1 In the Requirements Editor toolstrip, click New Requirement Set.
2 Enter a filename, such as FuelSysRequirements. Save the requirement set.

Import Requirements from External Documents

FuelSysRequirements is the requirements set. The requirements reference the content in the
external documents:

• FuelSysDesignDescription.docx
• FuelSysRequirementsSpecification.docx
• FuelSysTestScenarios.xlsx

1. To import, right-click FuelSysRequirements in the Index and select Import As Read-only
References.

2. In the Importing Requirements dialog box, select Microsoft Word Document for the Document
type.

3. For Document location, browse for the FuelSysDesignDescription.docx file in the working
folder. If the file is already open, you can select it from the drop-down list.

5 Requirements Management Interface Setup

5-16

4. Select options:

• Select Rich text (include graphics and tables).
• Select Use bookmarks to identify items and serve as custom IDs. This preserves links to

existing document bookmarks in the new requirement set.

4. Click Import. The new requirement set appears in the Requirements Editor.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-17

5. You can navigate to the document. In the Properties pane, click Show in document.

5 Requirements Management Interface Setup

5-18

Now, import requirements from a Microsoft® Excel® document. When importing from Excel, you
specify which columns to import. You can map the columns to either Summary, Keywords, or
Custom Attribute fields in the imported data. You can also locate specific ranges in tables by
specifying a regular expression pattern of requirements identifiers.

1. Open the FuelSysTestScenarios.xlsx file from the working folder.

2. In the Requirements Editor, right-click FuelSysRequirements in the Index and select Import As
Read-only References.

3. Configure the import settings as shown.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-19

4. Click Import. A new top-level node contains references to the test scenario items in the Excel
document.

5 Requirements Management Interface Setup

5-20

Repeat the import process for the file FuelSysRequirementsSpecification.docx.

Update Model Link Destinations

Update the model link destinations to the imported requirements. Open the FuelSysWithReqLinks
model from the working folder.

open_system("FuelSysWithReqLinks.slx")

2. Enable the Requirements Perspective of the model. Click the icon at the lower-right of the model
canvas and click the Requirements icon. The FuelSysRequirements set appears in the
Requirements browser.

3. Right-click the FuelSysRequirements line item and select Redirect Links to Imported
References.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-21

Update Requirements that Reference External Documents

If you change the requirement content in the external document, update the Requirement Set to
reflect the latest version:

1. Select the top-level Import node in the Requirements Editor.

2. In the right pane, under Requirement Interchange, click the Update button.

5 Requirements Management Interface Setup

5-22

Review the Imported References

Importing the three documents creates three top-level nodes in the left pane of Requirements Editor.
Save the requirement set.

Expand the sub-trees and click on individual items to review the imported contents. Click the Show
in document button for navigation to corresponding location in the original external document.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-23

Load a Model with Links to Imported Documents

In this step, you load a model with existing links to imported documents. If you have models with RMI
data in the Simulink® Verification and Validation™ format, opening those models with an available
Simulink Requirements license prompts you save the requirements data in the updated Simulink
Requirements format.

Clicking Save now creates a Link Set .slmx file.

In this example, open the FuelSysWithReqLinks.slx model in the working folder. In the
notification bar at the top of the canvas, click the Save now link to create a Link Set file
FuelSysWithReqLinks.slmx.

5 Requirements Management Interface Setup

5-24

To highlight blocks with requirement links, in the Requirements Viewer tab, click the Highlight
Links button.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-25

To show the linked requirement, open the Requirements Manager tab and select a block.

5 Requirements Management Interface Setup

5-26

If the Requirements Editor is open, the reference item is highlighted. You can review the contents of
the requirement in the Details pane.

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-27

The incoming link is displayed in the Links pane. With Simulink Requirements, you do not need to
insert navigation controls into Word and Excel® documents to know where the links are. You can find
the links in Requirements Editor.

A Simulink Requirements license is needed to use the Requirements Editor. When corresponding
references are not loaded in Requirements Editor, navigation will bring you to the original content in
the external document, as in previous versions.

5 Requirements Management Interface Setup

5-28

Cleanup

Clear the open requirement sets and link sets. Close all open models.

slreq.clear;
bdclose all;

 Migrating Requirements Management Interface Data to Simulink® Requirements™

5-29

Microsoft Office Traceability

• “Link to Requirements in Microsoft Word Documents” on page 6-2
• “Link to Requirements in Excel Workbooks” on page 6-7
• “Navigate to Requirements in Microsoft Office Documents from Simulink” on page 6-10
• “Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)” on page 6-14

6

Link to Requirements in Microsoft Word Documents
With Simulink Requirements, you can create direct links from linkable items on page 2-32 such as
Simulink blocks or test cases to requirements in Microsoft Word. You can create a link to a selection
in Microsoft Word, a named bookmark, or a section heading. You can only create direct links to
requirements in Microsoft Word on Windows platforms.

Link a Requirement in Word to a Simulink Block
In this example, you will link requirements from a document in Microsoft Word to a Simulink block.
Open the slvnvdemo_fuelsys_officereq model.

open_system('slvnvdemo_fuelsys_officereq');

Open the slvnvdemo_FuelSys_DesignDescription.docx requirements document from the
working directory, or at the MATLAB® command line by entering:

open('slvnvdemo_FuelSys_DesignDescription.docx')

Configure Selection Link Settings

First, ensure that Simulink Requirements can link to Word documents and that bidirectional linking
and external connectivity are enabled.

1 In Simulink, in the Apps tab, click Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements pane, in the View drop-down menu, select Links.
4 In the Requirements tab, click Link Settings > Linking Options. The Requirement Settings

dialog appears.
5 Navigate to the Selection Linking tab.
6 Next to Enabled applications ensure that Word is selected.
7 In the Document file reference drop-down menu, select filename only (on MATLAB

path).
8 Under When creating selection-based links, ensure that Modify destination for

bidirectional linking and Store absolute path to model file are both selected. Make sure
that Use ActiveX for incoming links (backward compatibility) is cleared.

9 Ensure that Enable external connectivity at MATLAB startup is selected.
10 Click Close.

6 Microsoft Office Traceability

6-2

Link to a Selection in Microsoft Word

Create a link from the selected text of the Determination of pumping efficiency requirement
in Word to the Pumping Constant block:

1 In the slvnvdemo_FuelSys_DesignDescription Word document, find the section titled 2.2
Determination of pumping efficiency.

2 Select the header text.
3 In the slvnvdemo_fuelsys_officereq Simulink model, double-click the fuel rate

controller subsystem to open it.
4 Double-click the Airflow calculation subsystem to open it.
5 Right-click the Pumping Constant block and click Requirements > Link to Selection in

Word. In Word, a bookmark is inserted with an automatically generated name. A link icon ()
is also inserted to navigate to the Simulink item associated with this requirement.

6 Navigate to your requirement in Word by right-clicking the Pumping Constant block, selecting
Requirements and clicking the numbered requirement.

7
Navigate back to your Simulink block by clicking the link icon () in Word. If you don't want
to add this link icon to your Word document when you create the link, clear Modify destination
for bidirectional linking in the Requirements Settings window. However, the Word documented
is still modified when you create the link with this method because a bookmark is added.

 Link to Requirements in Microsoft Word Documents

6-3

Create a Link to a Bookmark in a Microsoft Word Requirements Document

You can link from Simulink to an existing bookmark in your Word document. In Word, you can create
bookmarks to each of your requirements with a meaningful name that represents the requirement
content. When you create a link with this method, the requirements Word document is not modified
and no Simulink navigation link is added to the Word document.

To add a bookmark to your Microsoft Word document, see Add or delete bookmarks in a Word
document or Outlook message on the Microsoft website.

Create a bookmark for the Determination of pumping efficiency requirement in Word, then
link the Pumping Constant block to the bookmark:

1 In the slvnvdemo_FuelSys_DesignDescription.docx Word document, find the section
titled 2.2 Determination of pumping efficiency.

2 Create a bookmark with the name Determination_of_pumping_efficiency.
3 Save and close the Word document.
4 In the slvnvdemo_fuelsys_officereq Simulink model, double-click the fuel rate

controller subsystem to open it.
5 Double-click the Airflow calculation subsystem to open it.
6 Right-click the Pumping Constant block and select Requirements > Open Outgoing Links

dialog.
7 In the Outgoing Links dialog, click New.
8 From the Document type drop-down, select Microsoft Word.
9 Next to the Document field, click Browse and select

slvnvdemo_FuelSys_DesignDescription.docx. Click Open.
10 Select the Document Index tab. Scroll down to the bookmarks section and select the

Determination_of_pumping_efficiency bookmark. If your bookmark does not appear, click
Refresh. Click Apply and then click OK to create the link.

6 Microsoft Office Traceability

6-4

https://support.microsoft.com/en-us/office/add-or-delete-bookmarks-in-a-word-document-or-outlook-message-f68d781f-0150-4583-a90e-a4009d99c2a0
https://support.microsoft.com/en-us/office/add-or-delete-bookmarks-in-a-word-document-or-outlook-message-f68d781f-0150-4583-a90e-a4009d99c2a0

You can navigate to your requirement in Word by right-clicking the Pumping Constant block,
selecting Requirements, and clicking the numbered requirement with the text
Determination_of_pumping_efficiency in
slvnvdemo_FuelSys_DesignDescription.docx.

Create a Link to a Heading in a Microsoft Word Requirements Document

You can create headings and subheadings in Microsoft Word, then link Simulink blocks to these
headings. Similar to creating a link to a bookmark, creating a link to a heading allows you to give a
link a meaningful name. If your requirements Word document already has section headings, then
creating a link with this method does not modify the requirements document. However, you cannot
navigate between Simulink and Word when you link to a heading.

If your Word document does not already have headings, see Add a heading on the Microsoft website.

The slvnvdemo_FuelSys_DesignDescription.docx Word document already has headings for all
of the requirements. Create a link from the Determination of pumping efficiency
requirement in Word to the Pumping Constant block:

1 Close the slvnvdemo_FuelSys_DesignDescription.docx requirements Word document.
2 In the slvnvdemo_fuelsys_officereq Simulink model, double-click the fuel rate

controller subsystem to open it.
3 Double-click the Airflow calculation subsystem to open it.
4 Right-click the Pumping Constant block and select Requirements > Open Outgoing Links

dialog.

 Link to Requirements in Microsoft Word Documents

6-5

https://support.microsoft.com/en-us/office/add-a-heading-3eb8b917-56dc-4a17-891a-a026b2c790f2

5 In the Outgoing Links dialog, click New.
6 From the Document type drop-down, select Microsoft Word.
7 Next to the Document field, click Browse and select

slvnvdemo_FuelSys_DesignDescription.docx. Click Open.
8 Select the Document Index tab. Under Outline Headings, select 2.2 Determination of

pumping efficiency. Click Apply and then click OK to create the link.
9 Navigate to your requirement in Word by right-clicking the Pumping Constant block, selecting

Requirements, and clicking the numbered requirement with the text 2.2 Determination of
pumping efficiency in slvnvdemo_FuelSys_DesignDescription.docx.

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also

More About
• “Requirement Links” on page 2-32
• “Link to Requirements in Excel Workbooks” on page 6-7
• “Import Requirements from Microsoft Office Documents” on page 1-11
• “Import and Update Requirements from a Microsoft Word Document” on page 1-54

6 Microsoft Office Traceability

6-6

Link to Requirements in Excel Workbooks
With Simulink Requirements, you can create direct links from linkable items on page 2-32 such as
Simulink blocks or test cases to requirements in Microsoft Excel. You can only create direct links to
requirements in Microsoft Excel on Windows platforms.

Navigate from a Model Object to Requirements in an Excel Workbook
1 Open the example model. At the command line, enter:

slvnvdemo_fuelsys_officereq
2 In the Apps tab, click Requirements Manager. In the Requirements tab, click Highlight

Links to highlight the model objects with requirements.
3 Right-click the Test inputs Signal Builder block and select Requirements > 1. “Normal mode

of operation”.

The slvnvdemo_FuelSys_TestScenarios.xlsx file opens, with the associated cell
highlighted.

Keep the example model and workbook open.

For information about creating requirements links in Signal Builder blocks, see “Link Signal Builder
Blocks to Requirements and Simulink Model Objects” on page 8-9.

Create Requirements Links to the Workbook
1 At the top level of the slvnvdemo_fuelsys_officereq model, right-click the speed sensor

block and select Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens.
2 To create a requirements link, click New.
3 In the Description field, enter:

Speed sensor failure

You will link the speed sensor block to the Speed Sensor Failure information in the Excel
requirements document.

4 When you browse and select a requirements document, the RMI stores the document path as
specified by the Document file reference option on the Requirements Settings dialog box,
Selection Linking tab.

For information about which setting to use for your working environment, see “Document Path
Storage” on page 11-35.

5 At the Document field, click Browse to locate and open the
slvnvdemo_FuelSys_TestScenarios.xlsx file.

The Document Type field information changes to Microsoft Excel.
6 In the workbook, the Speed sensor failure information is in cells B22:E22. For the Location

(Type/Identifier) field, select Sheet range and in the second field, enter B22:E22. (The cell
range letters are not case sensitive.)

 Link to Requirements in Excel Workbooks

6-7

7 Click Apply or OK to create the link.
8 To confirm that you created the link, right-click the speed sensor block and select Requirements

> 1. “Speed sensor failure”.

The workbook opens, with cells B22:E22 highlighted.

Keep the model and Excel file open.

Link Multiple Model Objects to a Microsoft Excel Workbook
You can use the same technique to link multiple model objects to a requirement in a Excel workbook.
Follow this workflow:

1 In the model window, select the objects to link to a requirement.
2 Right-click one of the selected objects and select Requirements > Open Outgoing Links

dialog.
3 When you browse and select a requirements document, the RMI stores the document path as

specified by the Document file reference option on the Requirements Settings dialog box,
Selection Linking tab.

For information about which setting to use for your working environment, see “Document Path
Storage” on page 11-35.

4 Use the Link Editor to specify information about the Excel requirements document, the
requirement, and the link.

5 Click Apply or OK to create the link.

Change Requirements Links
1 In the slvnvdemo_fuelsys_officereq model, right-click the MAP sensor block and select

Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens displaying the information about the
requirements link.

6 Microsoft Office Traceability

6-8

2 In the Description field, enter:

MAP sensor test scenario

The Keyword field contains the tag test. User tags filter requirements for highlighting and
reporting.

Note For more information about keywords, see “Filter Requirements with User Tags” on page
5-11.

3 Click Apply or OK to save the change.

Keep the example model open.

 Link to Requirements in Excel Workbooks

6-9

Navigate to Requirements in Microsoft Office Documents from
Simulink

With Simulink Requirements, you can capture, track, and manage requirements in Microsoft Word
and Excel. When you create a link from a model object to a requirement RMI stores the link data in
the model file. Using this link, you can navigate from the model object to its associated requirement.
You can only create and navigate direct links to requirements in Microsoft Word and Excel on
Windows platforms.

Enable Linking from Microsoft Office Documents to Simulink Objects
When you create a link to a requirement in a Microsoft Office document, you can insert a navigation
object in the document. This navigation object serves as a link from the requirement to its associated
model object. By default, the RMI does not insert navigation objects into requirements documents.
You can change the settings to automatically insert the navigation objects when you create the link.

To enable linking from a Word or Excel document to the example model:

1 Open the example “Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft
Office)” on page 6-14.

openExample('slrequirements/ManageReqsForFaultTolerantFuelCtrlSysMicrosoftOffice07Example')
2 Open the model:

open_system("slvnvdemo_fuelsys_officereq")

Note You can modify requirements settings in the Requirements Settings dialog box. These
settings are global and not specific to open models. Changes you make apply not only to open
models, but also persist for models you subsequently open. For more information about these
settings, see “Requirements Settings” on page 5-10.

3 In the Apps tab, click Requirements Manager. In the Requirements tab, ensure Layout >
Requirements Browseris selected. In the Requirements pane, in the View drop-down select
Links. In the Requirements tab, select Link Settings > Linking Options.

The Requirements Settings dialog box opens.
4 On the Selection Linking tab of the Requirements Settings dialog box:

• Enable Modify destination for bidirectional linking.

When you select this option, every time you create a selection-based link from a Simulink
object to a requirement, the RMI inserts a navigation object at the designated location in the
requirements document.

• To specify one or more keywords to apply to the links that you create, in the Apply this
keyword to new links field, enter the keyword names.

For more information about keywords, see “User Tags and Requirements Filtering” on page 5-
11.

5 Click Close to close the Requirements Settings dialog box. Keep the
slvnvdemo_fuelsys_officereq model open.

6 Microsoft Office Traceability

6-10

Insert Navigation Objects in Microsoft Office Documents
Use selection-based linking to create a link from the slvnvdemo_fuelsys_officereq model to a
requirements document. If you have configured the RMI as described in “Enable Linking from
Microsoft Office Documents to Simulink Objects” on page 6-10, the RMI can insert a navigation
object into the requirements document.

1 Open the Word document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/
slvnvdemo_FuelSys_RequirementsSpecification.docx

2 Select the Throttle Sensor header.
3 In the slvnvdemo_fuelsys_officereq model, open the engine gas dynamics subsystem.
4 Right-click the Throttle & Manifold subsystem and select Requirements > Link to Selection in

Word.
5 The RMI inserts an URL-based link into the requirements document.

Link to Multiple Model Objects

If you have several model objects that correspond to one requirement, you can link them to one
requirement with a single navigation object. This eliminates the need to insert multiple navigation
objects for a single requirement. The model objects must be available in the same file.

The workflow for linking multiple model objects to one Microsoft Word entry is as follows:

1 Make sure that the RMI is configured to insert navigation objects into requirements documents,
as described in “Enable Linking from Microsoft Office Documents to Simulink Objects” on page
6-10.

2 Select the Word requirement to link to.
3 Select the model objects that need to link to that requirement.
4 Right-click one of the model objects and select Requirements > Link to Selection in Word.

A single navigation object is inserted at the selected requirement.
5 Navigate to the model by following the navigation object link in Word.

Customize Microsoft Office Navigation Objects
If the RMI is configured to modify destination for bidirectional linking, the RMI inserts a navigation

object into your requirements document. This object looks like the icon for the Simulink software:

Note In Microsoft Office requirements documents, following a navigation object link highlights the
Simulink object that contains a bidirectional link to the associated requirement.

To use an icon of your own choosing for the navigation object:

 Navigate to Requirements in Microsoft Office Documents from Simulink

6-11

1 In the Requirements tab, select Link Settings > Linking Options.
2 Select the Selection Linking tab.
3 Select Modify destination for bidirectional linking.

Selecting this option enables the Use custom bitmap for navigation controls in documents
option.

4 Select Use custom bitmap for navigation controls in documents.
5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap image (.bmp) file for
the navigation object. Other types of image files might give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.
7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document, the RMI uses the file you
selected.

Navigate Between Microsoft Office Requirement and Model
In “Insert Navigation Objects in Microsoft Office Documents” on page 6-11, you created a link
between a Microsoft Office requirement and the Throttle & Manifold subsystem in the
slvnvdemo_fuelsys_officereq example model. Navigate these links in both directions:

1 In the slvnvdemo_fuelsys_officereq model, right-click the Throttle & Manifold subsystem
and select Requirements > 1. “Throttle Sensor”.

The requirements document opens, and the header in the requirements document is highlighted.

2 In the requirements document, next to Throttle Sensor, follow the navigation object link.

The engine gas dynamics subsystem opens, with the Throttle & Manifold subsystem highlighted.

Navigation from Microsoft Office requirements documents is not automatically enabled upon
MATLAB startup. Navigation is enabled when you create a new requirements link or when you have
enabled bidirectional linking as described in “Insert Navigation Objects in Microsoft Office
Documents” on page 6-11.

Note You cannot navigate to requirements from Microsoft Word 2013 onwards when the document is
open in read-only mode. Alternately, consider disabling the “Open e-mail attachments and other
uneditable files in reading view” option in the Microsoft Word options or using editable documents.

6 Microsoft Office Traceability

6-12

When attempting navigation from requirements links with the icon, if you get a “Server Not
Found” or similar message, enter the command rmi('httpLink') to activate the internal MATLAB
HTTP server.

 Navigate to Requirements in Microsoft Office Documents from Simulink

6-13

Managing Requirements for Fault-Tolerant Fuel Control System
(Microsoft Office)

Requirements Management Interface (RMI) provides tools for creating and reviewing links between
Simulink objects and requirements documents. This example illustrates linking model objects to
Microsoft Office Documents, navigation of these links, generating requirements report and
maintaining consistency of links. See also “Working with IBM Rational DOORS 9 Requirements” on
page 7-50 example for features specific to linking with requirements stored in IBM Rational DOORS.

The included example model is linked to documents in Microsoft Office format. If only an earlier
version of Microsoft Office is available to you, jump to Updating all links when documents are moved
or renamed on page 6-0 for an example of how to adjust the example model to work with included
earlier versions of documents. Direct links to Microsoft Office documents are only supported on
Windows® platforms.

Open Example Model

Requirements management features are demonstrated using an example model of a fault-tolerant fuel
control system. You can open this model by evaluating the following code.

open_system('slvnvdemo_fuelsys_officereq');

Set Up Requirements Manager to Work with Links

1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements Browser, in the View drop-down menu, select Links.

In this example, you will work exclusively in the Requirements tab and any references to toolstrip
buttons are in this tab.

Viewing Existing Requirements

This example starts with the model that only has a few requirements links. In the Requirements tab,
click Highlight Links to highlight blocks with requirements links or evaluate the following code.

rmi('highlightModel', 'slvnvdemo_fuelsys_officereq');

Orange highlighting corresponds to objects with linked requirements. Empty-fill highlighting is for
subsystems whose children have links to requirements. Double-click the fuel rate controller
block to open the subsystem and review child objects with requirements, or evaluate the following.

open_system('slvnvdemo_fuelsys_officereq/fuel rate controller');

6 Microsoft Office Traceability

6-14

Navigate to Document

Right-click the Airflow calculation block in fuel rate controller subsystem and select
Requirements > Mass airflow estimation in the context menu.

This opens the linked document and selects the target content. You can also evaluate the following
code:

rmidemo_callback('view','slvnvdemo_fuelsys_officereq/fuel rate controller/Airflow calculation',1)

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-15

Requirements Links in Stateflow Charts

Double-click the control logic chart block in the fuel rate controller subsystem to open the
chart. If you can't find it, evaluate the following code.

rmidemo_callback('locate','slvnvdemo_fuelsys_officereq/fuel rate controller/control logic');

States and transitions linked to requirements are highlighted. Right-click the Rich Mixture state,
select Requirements and follow the link at the top to view related documentation. Alternatively,
evaluate the following code:

rmidemo_callback('view','slvnvdemo_fuelsys_officereq/fuel rate controller/control logic:26',1)

Navigate from Requirements Document to Model Objects

In the slvnvdemo_FuelSys_DesignDescription.docx from the previous step, find section 3.3
Manifold pressure failure mode in the document and double-click the Simulink icon at the end of
subheader. This displays a relevant Simulink subsystem diagram with the target object highlighted.
Close all model windows and repeat navigation from the document.

Diagrams or charts are opened as necessary as long as model file can be located.

6 Microsoft Office Traceability

6-16

Creating New Links

To configure your settings for creating bidirectional links, do the following:

• In the Simulink model, in the Requirements tab, select Link Settings > Linking Options.
• In the dialog box that appears, make sure that Modify destination for bidirectional linking is

checked.

Now create new links similar to the ones you've just navigated. Note: Microsoft Word will not allow
you to create the link when the document is ReadOnly. For the next step of this example, consider
saving your own local copy of the document and using it instead of the installed document.

• In the slvnvdemo_FuelSys_DesignDescription.docx find section 2.2 Determination of
pumping efficiency.

• Select the entire header with a mouse.
• Right-click the Pumping Constant block in the Airflow calculation subsystem. If you can't
find it, evaluate the following:

rmidemo_callback('locate',['slvnvdemo_fuelsys_officereq/fuel rate controller/' ...
 'Airflow calculation/Pumping Constant']);

Select Requirements > Link to Selection in Word to create a link.

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-17

Right-click Pumping Constant block again. You should now see the newly created link at the top of
the context menu. Click it to navigate to the target in section 2.2 of
slvnvdemo_FuelSys_DesignDescription.docx.

Requirements Links in Signal Builder Blocks

Signal links are attached to individual groups of signals, not to the Signal Builder block as a whole.
Use this sort of links for test cases that are defined as Signal Builder groups.

Double-click the Test inputs Signal Builder block to see configured groups of signals. Normal
operation signals are periodically depressed accelerator pedal and constant engine RPM. Navigate to
the Test inputs block by evaluating the following code.

rmidemo_callback('locate','slvnvdemo_fuelsys_officereq/Test inputs');

• Click the Show verification settings button at the end of toolbar to display the Verification
panel.

• If you do not see the Requirements panel below the Verification block settings, click the
Requirements display button at the top of the panel.

• Right-click the link label under Requirements and select View to open the related requirements
data, this time in a Microsoft Excel document. The Simulink icon in the linked cell allows
navigation back to this signal group. Alternatively, evaluate the following code:

6 Microsoft Office Traceability

6-18

rmidemo_callback('view','slvnvdemo_fuelsys_officereq/Test inputs',1)

A transient RPM instability is modeled by a rectangular pulse on Engine speed data in the second
group of signals:

rmidemo_callback('signalgroup','slvnvdemo_fuelsys_officereq/Test inputs',2)

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-19

Suppose you need to link RPM sensor failure signal group to a different cell range in your Excel file.
Select this signal group in the drop-down list, right-click in the empty Requirements and select
Open Outgoing Links dialog from the context menu to open a dialog box.

6 Microsoft Office Traceability

6-20

The simplest way to add a link is to click Browse to find the Excel file. Then open the Excel file and
select the cells you want to link to. In the Outgoing Links menu, click Use Current and a link will
be created to your current selection.

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-21

• Right-click the new label under Requirements area and select View to navigate to see the target
cell in TestScenarios file.

Generating Requirements Report

In the Requirements tab, click Share > Generate Model Traceability Report to automatically
generate a report on all requirements links in the model, or evaluate the following code.

rmidemo_callback('report','slvnvdemo_fuelsys_officereq')

The default report is generated according to the template that is included with the product.

The Report Generator interface provides total control over the content of generated reports,
including the creation of entirely new templates. It can be accessed by evaluating the following:
setedit('requirements')

A subset of options is also accessed in the Requirements tab, under Share > Report Options. For
example, you may want to disable Highlight the model before generating report checkbox if the
resulting report will be printed in black-and-white or viewed via projector, or you may want to include
lists of objects that have no links to requirements.

6 Microsoft Office Traceability

6-22

Requirements Consistency Checking

Use Model Advisor to automatically detect and fix inconsistencies in requirements links data. Click
Check Consistency in the Requirements tab to open Model Advisor with only the RMI check points
activated. The links are checked for missing documents, unmatched locations in documents,
unmatched labels for selection-based links, and inconsistent path information. You can also evaluate
the following to open Model Advisor:

rmidemo_callback('check','slvnvdemo_fuelsys_officereq')

Click the Run Selected Checks button to verify the consistency of links in your model. RMI will
automatically open linked documents and check for consistency of stored data. When done, click
individual check items to view the results in the right-side panel. In this example, one of the links
points to invalid location in a document:

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-23

Another link has a label that does not match the original selection when the link was created:

6 Microsoft Office Traceability

6-24

Click Fix or Update in Model Advisor report to automatically resolve reported inconsistencies. Rerun
the checks to ensure reported problem is resolved.

Filtering Requirements on User Tag Property

Requirements links in Simulink support an optional User Tag property that can store any comma-
separated string values. Use these tags to distinguish between different types of links, for example,
functional requirements links, design description links or testing details links. You can specify the
tags when creating new links, or later via Open Outgoing Links dialog... dialog box.

You can later use these tags to focus your work on a subset of links, or to automatically strip a subset
of links from the model. This is controlled via Filters tab of the Requirements Settings menu,
opened by clicking Link Settings > Linking Options in the Requirements tab.

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-25

When model requirements are highlighted, modifying the filter setting updates the view to only show
the matching requirements links. Requirements links in this example model are tagged with one of
the following: "design", "requirement", "test". The view adjusts accordingly when you modify filter
settings. For example, you can highlight only links that are tagged "requirement".

6 Microsoft Office Traceability

6-26

If you generate a report with User Tag filters enabled, your report content is filtered accordingly.
This may be useful to focus your report on a particular subset of links.

If you run consistency checking with User Tag filters enabled, only links that match the given filter
settings are checked. Use this to target your consistency checking to a required subset of links.

Updating All Links When Requirements Documents Are Moved or Renamed

It happens sometimes that the documents need to be renamed or moved after links were created. Use
rmidocrename command-line utility to simultaneously adjust all links in the model.

help rmidocrename

 RMIDOCRENAME Update model requirements document paths and file names.
 RMIDOCRENAME(MODEL_HANDLE, OLD_PATH, NEW_PATH)
 RMIDOCRENAME(MODEL_NAME, OLD_PATH, NEW_PATH)

 RMIDOCRENAME(MODEL_HANDLE, OLD_PATH, NEW_PATH) collectively
 updates the links from a Simulink(R) model to requirements files whose
 names or locations have changed. MODEL_HANDLE is a handle to the
 model that contains links to the files that you have moved or renamed.
 OLD_PATH is a string that contains the existing file name or path or
 a fragment of file name or path.
 NEW_PATH is a string that contains the new file name, path or fragment.

 RMIDOCRENAME(MODEL_NAME, OLD_PATH, NEW_PATH) updates the
 links to requirements files associated with MODEL_NAME. You can pass
 RMIDOCRENAME a model handle or a model name string.

 When using the RMIDOCRENAME function, make sure to enter specific
 strings for the old document name fragments so that you do not
 inadvertently modify other links.

 RMIDOCRENAME displays the number of links modified.

 Examples:

 For the current Simulink(R) model, update all links to requirements
 files whose names contain the string 'project_0220', replacing
 with 'project_0221':
 rmidocrename(gcs, 'project_0220', 'project_0221');

 For the model whose handle is 3.0012, update links after all
 documents were moved from C:\My Documents to D:\Documents
 rmidocrename(3.0012, 'C:\My Documents', 'D:\Documents');

 See also RMI RMITAG

• Create a writable copy of the example model. For example, open the original system and save as
slvnvdemo_fuelsys_officereq_copy.

open_system('slvnvdemo_fuelsys_officereq')
save_system('slvnvdemo_fuelsys_officereq','slvnvdemo_fuelsys_officereq_copy.slx')

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-27

• Highlight requirements that are tagged "requirement". These links point to
slvnvdemo_FuelSys_RequirementsSpecification.docx and you need them to point to
corresponding locations in Microsoft Word 2003 version of the same document.

rmidemo_callback('filter','slvnvdemo_fuelsys_officereq_copy','requirement')

• Evaluate the following code to redirect the links to the .doc document:
rmidocrename(gcs,'Specification.docx','Specification.doc')

• Partial matching in document name is performed; you do not need to specify the full name for the
document, as long as the given pattern is specific enough to avoid unwanted changes. For
example, replacing .doc with .docx would go wrong because .docx becomes .docx. RMI responds
with the following message: "Processed 16 objects with requirements, 7 out of 18 links were
modified". Only objects with matching requirements were processed due to the current User Tag
filter setting.

• Try navigating the highlighted links. For example, navigate from Relational Operator under
Airflow calculation. Microsoft Word 2003 version of the document opens to a correct
location.

6 Microsoft Office Traceability

6-28

rmidemo_callback('locate',['slvnvdemo_fuelsys_officereq_copy/fuel rate controller/' ...
 'Airflow calculation/Relational Operator3'],1);

Insert Navigation Controls into Documents to Match One-way Links

If you previously created one-way links from Simulink objects to documents, and later need to enable
navigation from locations in documents back to the corresponding objects in Simulink, use the
rmiref.insertRefs utility to insert matching "return" links into the requirements document.

One of the documents included with this example, slvnvdemo_FuelSys_DesignDescription.doc
does not have Simulink navigation controls. It does have the bookmarks in locations that correspond
to links tagged design in the example model.

• Reuse the writable copy of the model from the previous section.

open_system('slvnvdemo_fuelsys_officereq_copy')

• Evaluate the following code to redirect matching links from
slvnvdemo_FuelSys_DesignDescription.docx to
slvnvdemo_FuelSys_DesignDescription.doc. The following message appears in the command
window: Processed 16 objects with requirements, 8 out of 16 links were modified.
rmidocrename('slvnvdemo_fuelsys_officereq_copy','Description.docx','Descrip
tion.doc');

• Navigate one of the links. For example, right-click the Airflow calculation subsystem block,
right-click and select Requirements and then click the linked requirement. This brings up
slvnvdemo_FuelSys_DesignDescription.doc, which does not have Simulink navigation controls.
If you can't find the block, evaluate the following code.

rmidemo_callback('locate',['slvnvdemo_fuelsys_officereq_copy/fuel rate controller/' ...
 'Airflow calculation']);

• Run rmiref.insertRefs('slvnvdemo_fuelsys_officereq_copy','word') to insert
document-to-model navigation controls into slvnvdemo_FuelSys_DesignDescription.doc. You
see the Simulink navigation icons inserted into the document. You can now use these icons to
navigate to Simulink objects in the slvnvdemo_fuelsys_officereq_copy model.

It is not possible to insert navigation controls if the specified location bookmark is missing in the
document. In this example the document was not saved after the last link was created. The following
warning appears in the command window: The named item "Simulink_requirement_item_7"
could not be located in the bookmarks or section headings.

When the link in the model does not specify a location, the navigation control is inserted at the top of
the document.

Remove All Simulink Reference Buttons from the Document

When Simulink navigation controls are inserted into an Microsoft Office Document, you do not
necessarily have to save the document before navigating to Simulink. This allows you to temporarily
insert navigation objects when needed. If you saved the document with navigation buttons inserted
and now need to go back to a clean document, use the rmiref.removeRefs utility to remove the
buttons. For example, perform the following steps to remove the buttons inserted in the previous step
of this example:

• Make sure slvnvdemo_FuelSys_DesignDescription.doc is open and is your current
Microsoft Word document.

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-29

• Run rmiref.removeRefs('word') to remove the buttons. RMI prompts for confirmation in
command window.

Repair Links from Documents to Simulink

Simulink navigation controls embedded in requirements documents may get outdated when Simulink
models are modified or moved. This results in broken links. Use the rmiref.checkDoc utility to
detect and repair links from external documents to Simulink. In this example you will fix one broken
link in slvnvdemo_FuelSys_DesignDescription.docx document.

• Run which slvnvdemo_fuelsys_officereq_copy and remove
slvnvdemo_fuelsys_officereq_copy.slx from MATLAB path if exists.

• Open slvnvdemo_FuelSys_DesignDescription.docx and try to navigate a link at the very
bottom of the document. The following error dialog appears:

• Run rmiref.checkDoc('slvnvdemo_FuelSys_DesignDescription.docx') to check the
document for broken links. RMI highlights detected problems in the document and displays an
HTML report.

6 Microsoft Office Traceability

6-30

All functional links are listed at the bottom of the report. You can navigate from this report to linked
objects in Simulink (Target in Simulink column) and to the target locations in the document
(Document content column).

 Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

6-31

Red font in the report highlights problems that require attention. In this case there is one broken link
that references an unresolved model name. Repair the links before moving on.

Cleanup

Clear the open requirement sets and link set. Close all open Simulinik models. Clear the link keyword
filter.

slreq.clear;
bdclose('all');
rmipref('FilterRequireTags','');

6 Microsoft Office Traceability

6-32

Requirements Traceability with IBM
Rational DOORS

• “Configure Simulink Requirements for IBM Rational DOORS Software” on page 7-2
• “Link with Requirements in IBM DOORS Next” on page 7-4
• “Link and Trace Requirements with IBM DOORS Next” on page 7-26
• “Navigate to Requirements in IBM Rational DOORS Databases from Simulink” on page 7-35
• “Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules”

on page 7-39
• “Working with IBM Rational DOORS 9 Requirements” on page 7-50
• “Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)”

on page 7-59

7

Configure Simulink Requirements for IBM Rational DOORS
Software

Simulink Requirements communicates with IBM Rational DOORS so that you can import
requirements and establish links between requirements and Model-Based Design items such as
Simulink model elements and tests. After you install or update MATLAB, Simulink, or IBM Rational
DOORS, you must configure MATLAB to communicate with Rational DOORS. You can only integrate
Simulink Requirements and Rational DOORS on Windows platforms.

First perform the setup described in “Configure Simulink Requirements for Interaction with Microsoft
Office and IBM Rational DOORS” on page 5-2. If Simulink Requirements and IBM Rational DOORS
communicate after performing that setup, you do not need to perform the setup described here.

Manually Install Additional Files for DOORS Software
The setup script automatically copies the required DOORS files to the installation folders. However,
the script might fail because of file permissions in your DOORS installation. If the script fails, change
the file permissions on the DOORS installation folders and rerun the script.

You can also manually install the required files into the specified folders, as described in the following
steps:

1 If the DOORS software is running, close the application.
2 Copy the following files from matlabroot\toolbox\shared\reqmgt\dxl to the

<doors_install_dir>\lib\dxl\addins folder.

addins.idx
addins.hlp

If you have not modified the files, replace any existing versions of the files; otherwise, merge the
contents of both files into a single file.

3 Copy the following files from matlabroot\toolbox\shared\reqmgt\dxl to the
<doors_install_dir>\lib\dxl\addins\dmi folder.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl
selblk.dxl

Replace any existing versions of these files.
4 Open the <doors_install_dir>\lib\dxl\startup.dxl file. In the user-defined files

section, add the following include statement:

#include <addins/dmi/dmi.inc>

If you upgrade from Version 7.1 to a later version of the DOORS software, perform these
additional steps:

a In your DOORS installation folder, navigate to the ...\lib\dxl\startupFiles subfolder.
b In a text editor, open the copiedFromDoors7.dxl file.
c Add // before this line to comment it out:

7 Requirements Traceability with IBM Rational DOORS

7-2

#include <addins/dmi/dmi.inc>
d Save and close the file.

5 Start the DOORS and MATLAB software.
6 Run the setup script using the following MATLAB command.

rmi setup

Address DXL Errors
If you try to synchronize your Simulink model to a DOORS project without configuring Simulink
Requirements for use with DOORS, you might see the following errors:

-E- DXL: <Line:2> incorrectly concatenated tokens
-E- DXL: <Line:2> undeclared variable (dmiRefreshModule)
-I- DXL: all done with 2 errors and 0 warnings

If you see these errors, exit the DOORS software, rerun the steps in “Configure Simulink
Requirements for Interaction with Microsoft Office and IBM Rational DOORS” on page 5-2, and
restart the DOORS software.

See Also

More About
• “Configure Simulink Requirements for Interaction with Microsoft Office and IBM Rational

DOORS” on page 5-2
• “Import Requirements from IBM Rational DOORS” on page 1-33

 Configure Simulink Requirements for IBM Rational DOORS Software

7-3

Link with Requirements in IBM DOORS Next
This example shows how to link with requirements in IBM® DOORS® Next® and compares two ways
to create links. For more information, see “Import Requirements from IBM DOORS Next” on page 1-
27 and “Link and Trace Requirements with IBM DOORS Next” on page 7-26.

IBM Engineering Requirements Management DOORS Next (formerly known as DOORS Next
Generation, or DNG) is a requirements management tool in IBM Collaborative Lifecycle Management
platform. Traceability of file-based MBD artifacts (Simulink blocks, Test Cases, Data Dictionary
entries) with items managed on a shared server and accessed by means of web browser can be
accomplished in a few different ways. Your choice of workflow will depend on the needs and
constraints of a given project. This example gives a review of DOORS Next integration features
supported by Simulink Requirements, it includes step-by-step setup instruction and compares
alternative workflows. Working with IBM® DOORS® Next® is supported on Microsoft Windows®.

Overview

Simulink Requirements allows two different ways to integrate with DOORS: direct linking between
design elements and web-based requirements, and live cache approach where you establish
traceability natively in Simulink Requirements workspace. Each approach has unique advantages and
challenges.

Direct Linking approach allows to establish one-click navigation from your design to associated
requirements in DOORS, and from DOORS requirements back to linked design elements. Because this
approach requires system web browser interactions, DOORS server-side configuration is needed, as
well as system browser customization by the user. Because link destinations are 'external' to Simulink
Requirements, you can only use a limited subset of Simulink Requirements product features. For
example, additional scripting will be required for Implementation and Verification status analysis, and
for Change Tracking. On the other hand, you have a choice to store link information in DOORS server
data, so that links can be viewed and analyzed on DOORS side without MATLAB/Simulink session.

Live Cache approach relies on importing a snapshot of DOORS Requirements into Simulink
Requirements. Navigation from design or test to a related requirement in DOORS is still possible but
involves an intermediate proxy entry in Simulink Requirements set. Because both ends of your
created links belong to Simulink family domains, you can take full advantage of traceability features
in Simulink Requirements product. Cached content can be updated anytime when there are changes
on DOORS server side. Also, because links are stored only on MATLAB/Simulink side, this approach
avoids the problems of stale or conflicting links on the server. This approach does not necessarily
requires server-side configuration.

Details below will help you decide which approach is best for your project.

Direct Linking

You can link directly with DOORS Next artifacts, using the Link to Selected Item(s) in DNG
shortcut in Requirements menu for Simulink objects, MATLAB code, or Simulink Test Cases. This
capability implies that MATLAB session is aware of your selection in DOORS Next web browser,
which is why extra setup steps are required:

1 Simulink Requirements custom widget files must be copied to DOORS Next server, to make the
widget available for DOORS Next users.

2 Each user interested in linking with Simulink must add the widget to Mini Dashboard in
DOORS Next web interface.

7 Requirements Traceability with IBM Rational DOORS

7-4

3 System browser should be allowed to communicate with MATLAB's embedded HTTPS server
(localhost:31515).

Each required setup step is detailed below.

Server-side configuration

This step is performed by DOORS Next server administrator once per IBM server installation. You will
need to copy the dngsllink_config subfolder from MATLAB_INSTALL_DIR/toolbox/
slrequirements/slrequirements/resources/ into the DOORS Next server's custom extensions
folder. The location of custom extensions folder depends on the particular Jazz server version. For
example, if you are running Jazz server on a Windows computer, your extensions folder could be here:

C:\Program Files\IBM\JazzTeamServer\server\liberty\servers\clm\dropins\war
\extensions

You may also need to "enable dropins" in DOORS Next server configuration. Instruction below is
based on the following IBM's page: https://jazz.net/wiki/bin/view/Main/
RMExtensionsHostingGuide605

1 Locate server.xml file in the C:\[JAZZ_INSTALL_DIR]\server\liberty\servers\clm
folder.

2 Open this file in a text editor, and locate this line: <applicationMonitor
dropinsEnabled='false' pollingRate='10s' updateTrigger='mbean'/>

3 Change dropinsEnabled to 'true'.
4 Restart the server.

Please refer to IBM's page for more detailed instructions for hosting custom extensions.

Client Browser Configuration

This step needs to be performed once by each DOORS Next user interested in linking with MATLAB/
Simulink. After dngsllink_config custom extension files are available on your DOORS Next server,
follow these steps to add this custom widget to the Mini Dashboard in DOORS Next web interface.
Ensure that your DOORS Next server is secure (HTTPS), or the widget won't function correctly. After
logging into DOORS Next:

1. In Mini Dashboard, click the Add Widget button:

 Link with Requirements in IBM DOORS Next

7-5

https://jazz.net/wiki/bin/view/Main/RMExtensionsHostingGuide605
https://jazz.net/wiki/bin/view/Main/RMExtensionsHostingGuide605

Custom gadgets menu will open.

2. Click Add OpenSocial Gadget:

7 Requirements Traceability with IBM Rational DOORS

7-6

3. Specify the URL that matches the location of Simulink Requirements widget code on your server.
For example:

https://JAZZSERVERNAME:9443/extensions/dngsllink_config/dngsllink_config.xml:

4. Click Add Widget. Your Mini Dashboard should now display the Simulink Requirements
widget:

 Link with Requirements in IBM DOORS Next

7-7

Configuring MATLAB session

This step needs to be performed each time MATLAB session is restarted. Use the
slreq.dngConfigure command to prepare your MATLAB session for linking with DOORS Next.
Follow the prompts and provide the requested values. The server URL, port number, and username is
stored in your personal user preferences. However, you have to enter the DOORS Next password
each time.

1. When prompted, enter your DOORS Next server domain name and the port number. If you do not
see any port number displayed in the address bar of your system browser when viewing DOORS Next
pages, enter the default value of "9443".

2. Enter your DOORS Next user name, which may be different from your computer login user name:

7 Requirements Traceability with IBM Rational DOORS

7-8

3. When prompted, enter your DOORS Next password and press Enter. It is normal to see a few
warnings in MATLAB's command window when establishing connection with DOORS Next. The
feature will operate, unless there are errors.

4. After successful connection to the server is established, a dialog box appears to allow you select a
DOORS Next projects from the list, as well as the preferred configuration stream (if enabled for the
selected project).

5. A browser-to-localhost connection test runs automatically. This communication channel is required
for your MATLAB session to receive messages when you select DOORS Next item in the web browser.
You may see an empty browser page, and a popup from MATLAB indicating that you are ready for
linking:

6. If you do not see the confirmation message as shown above, your system browser may be blocking
HTTPS connections to https://localhost:31515. To resolve this issue, allow the connection. The
exact steps depend on your web browser. For example:

 Link with Requirements in IBM DOORS Next

7-9

In this case, click Advanced and then click the hyperlink to allow the connection:

If you still do not get the popup from MATLAB, your MATLAB session may be listening on a different
(non-default) port number, which can happen when starting more than one instance of MATLAB on

7 Requirements Traceability with IBM Rational DOORS

7-10

the same host. To quickly check the active port number, run this command:
connector.securePort. If this command returns anything other than 31515, make sure that you
do not have any other MATLAB instances running on the same host, then restart MATLAB. Repeat
connector.securePort command to confirm the correct port number. Rerun
slreq.dngConfigure setup steps.

Once you see the confirmation dialog, do not close the browser window. It is best to reuse this same
browser window for your DOORS Next session when linking with Simulink Requirements, because
you have just authorized this instance of the web browser application to communicate with MATLAB.
If you open a new browser window, depending on web browser type and version, secure
communication with MATLAB may be blocked again. If this happens, you can simply copy-paste the
following URL into your browser's address bar: https://localhost:31515/matlab/oslc/
inboundTest then, again, click on "Proceed to localhost" to allow connection with MATLAB.

One-way Links from MATLAB/Simulink to DOORS Next

In DOORS Next, open Show artifacts view for the requirements collection of interest, and select the
checkbox for the item you want to link with. You will notice that the Simulink Requirements widget
is updated to confirm the ID and label of the selected item. This information is sent to MATLAB when
you interact with DOORS Next item checkboxes.

 Link with Requirements in IBM DOORS Next

7-11

In Simulink, right-click a block you want to link from, then select Link to Selected Item(s) in DNG
under Requirements context menu. It may take a few seconds for MATLAB to retrieve additional
data from DOORS Next and create the link.

Click the same block again to see the new link at the top of Requirements submenu. Click the link
label to navigate from Simulink to DOORS Next:

7 Requirements Traceability with IBM Rational DOORS

7-12

Note: if you do not see the Link to Selected Item(s) in DNG shortcut in the Requirements context
menu, you may need to enable DOORS linking option in Selection Linking tab of Requirements
Settings dialog:

Alternatively, you can control this setting via the command-line API:

rmipref('SelectionLinkDoors',true);

Reviewing MATLAB/Simulink Links from the DOORS Next Side

DOORS Next integration feature in Simulink Requirements allows you to query MATLAB/Simulink
links from DOORS Next context. When you select an item from the artifacts list in DOORS Next page,
the Simulink Requirements widget displays information about the selected item, and provides a
hyperlink for querying links as stored in Simulink Requirements. Click Query Links from SL to get a
popup with the list of incoming links for the selected DOORS Next item.

 Link with Requirements in IBM DOORS Next

7-13

One should keep in mind that these links cannot be discovered when MATLAB is not running, or when
the corresponding data files are not loaded on Simulink side. For example, the link we created above
is stored in .slmx file for the linked Simulink model. If this .slmx file is not loaded in the current
MATLAB/Simulink session, no links will be reported in the browser popup. When relying on Query
Links from SL to review links, you must first ensure that:

7 Requirements Traceability with IBM Rational DOORS

7-14

1 MATLAB is running
2 MATLAB session is configured for DOORS Next linking (slreq.dngConfigure step was

completed)
3 all related linked design artifacts are loaded

You can review the list of loaded Link Sets by opening the Requirements Editor by entering
slreq.editor at the MATLAB command line. In the Requirements Editor, click Show Links.

Store Links in DOORS Next for Two-Way Traceability

If you prefer to always find your MATLAB/Simulink links in DOORS Next context, independent from
whether Simulink is running or whether the linked MBD artifacts are loaded, you have an option of
truly bi-directional linking. Re-open the Requirements Settings dialog to the Selection Linking
tab and enable the Modify destination for bi-directional linking checkbox.

Alternatively, you can use the command-line API rmipref('BiDirectionalLinking',true) to
toggle the option. Once bi-directional linking is enabled, each new link you create will not only add an
entry in the Simulink Requirements Link Set, but will also insert an External Web Link from DOORS
Next, which you can see in the Links panel for the linked DOORS Next item. You can use the
hyperlinks in the Links pane to navigate from DOORS Next item to linked objects in MATLAB/
Simulink.

 Link with Requirements in IBM DOORS Next

7-15

When enabling Modify destination for bi-directional linking option in Requirements Settings,
consider the following:

1. Every DOORS Next user will see these links when working with same version of this DOORS Next
project, even if they do not use Simulink or do not have access to linked MBD artifacts.

2. Navigation from DOORS Next will fail, unless MATLAB is running, and linked artifact is either
already loaded or can be found on MATLAB path.

3. Links inserted into DOORS Next by Simulink Requirements do not synchronize automatically. If you
delete a link on Simulink side, link in DOORS Next remains, and you need to remove it manually.

4. Simulink Requirements product does not check for conflicts in DOORS Next links. For example, if
Simulink user A linked a DOORS Next requirement to a block in a Simulink model, the links inserted

7 Requirements Traceability with IBM Rational DOORS

7-16

in DOORS Next will behave consistently for this user, but user B will see the link from DOORS Next,
and can navigate it to the same block in his version of same Simulink model, even if his copy of the
Simulink model does not store a link from Simulink block to DOORS Next. If user B decides to create
his own link from same block to same DOORS Next item while his personal preference is configured
for bi-directional linking, this will insert a duplicate link on DOORS Next side. If user A later changed
his mind and deleted a link from block to Simulink, and then tries to cleanup the backlinks from
DOORS Next, both links will need to be deleted on DOORS Next side, and now user B will be left with
only a one-way link from Simulink to DOORS Next. Using personal streams and changesets in DOORS
Next should minimize this sort of problems.

rmipref('BiDirectionalLinking', true);

Working with Cached Requirements Collections

As can be seen from the above, both 1-way and 2-way direct linking solutions have disadvantages:

• direct linking requires that you modify the DOORS Next server configuration and install the
Simulink Requirements custom gadget,

• direct linking requires HTTPS communication between your system browser and the local
MATLAB process, which could present a security risk when using this same browser for external
web pages,

• 1-way links are difficult to discover from DOORS Next side, and are entirely hidden unless linked
artifacts are loaded in current MATLAB session,

• 2-way links may become difficult to manage in large multi-user projects or when switching
between DOORS Next streams and changesets,

• you cannot control the Type of links from DOORS Next to MATLAB/Simulink, the links are always
of generic "Link To" type,

• built-in analysis in Simulink Requirements product do not cover the direct links.

To resolve these limitations and to bypass most of the complications, Simulink Requirements offers an
entirely different workflow option: you can cache a subset of DOORS Next requirements into an
internally managed Simulink Requirements Set, then perform all linking and analysis in Simulink
Requirements environment as you would do with the usual internally managed or imported entries.

You will not be able to edit cached DOORS Next contents locally, and you will not immediately see the
updates when the sourced requirements are updated on the server, but you get the advantage of
native linking support between Simulink artifacts, including drag-drop linking with Simulink objects,
without disturbing the server side, and you can use all the features of Simulink Requirements product
for reviewing and analysing links, including implementation and verification status, as well as change
impact detection and management.

Capture DOORS Next Collections into Simulink Requirements Set

In the Requirements Editor, click Import. Select "IBM DOORS Next Generation" in Document type
selector:

 Link with Requirements in IBM DOORS Next

7-17

As before, you will be prompted for the DOORS Next login password. If this is your initial connection
for the current MATLAB session, you will also be prompted to confirm the server URL and the
username.

Document location selector will populate with names of all DOORS Next project available on the
specified server. Once you select the Project to import from, additional option controls will appear:

7 Requirements Traceability with IBM Rational DOORS

7-18

Two different modes are supported for capturing DOORS Next contents into Simulink Requirements.
You can import the specified module, including the hierarchical relationships between DOORS Next
requirements, or you can switch into the Filter by query mode, which produces a flat list of matched
requirements.

 Link with Requirements in IBM DOORS Next

7-19

When using the Filter by query option, in most cases, you will not need to type the query expression
manually, but use the Query Builder dialog to configure the filter:

7 Requirements Traceability with IBM Rational DOORS

7-20

When you import using Filter by query, you can only use one filter at a time.

In both cases you get a top-level Import node with the ID that matches the name of your DOORS Next
project. The Summary text of the Import node will indicate the parameters used when capturing data
from DOORS Next. You can now work with the imported items as you would with the usual entries in
Simulink Requirements:

• create links with related MBD artifacts and use all the built-in analysis capabilities.
• navigate to the original requirements in DOORS Next by clicking the Show in document button,
• refresh the captured content using the Update from Server button,
• when you save to a .slreqx file, the links are saved to a corresponding .slmx file.

 Link with Requirements in IBM DOORS Next

7-21

The one essential difference, however, is that you cannot unlock and modify cached requirements: all
the needed updates should happen on the server side. You then use the Re-run query button for the
Import node (or the Update from Server button for a single requirement) to pull-in updates from the
server.

7 Requirements Traceability with IBM Rational DOORS

7-22

You cannot import images or tables from DOORS Next to Simulink Requirements.

Linking with Captured DOORS Next Items

Now that you have captured DOORS Next requirements collection of interest into a Requirement Set
and saved it to .slreqx file, you can easily established traceability between Requirements and
design, then manage your Link Sets together with the rest of MBD artifacts, without affecting other
users of the same DOORS Next project. For example, you can switch your Simulink model into
Requirements perspective view, then open the captured set of DOORS Next requirements in
requirements browser, and create links by drag-drop between the requirements browser and the
blocks in your Simulink diagram. You will see linked blocks highlighted together with linked cached
DOORS Next items in the requirements browser.

 Link with Requirements in IBM DOORS Next

7-23

Reviewing and Analyzing Traceability Data

As with links to internally-managed requirements, you can to access more details about links when
you select Links from the View drop-down. You can edit link properties such as Type, Description,
Rationale, keywords, and Comments.

As with all other Simulink Requirements links, you enable display of Implementation and Verification
status to check which requirements lack coverage, and which tests need to be rerun or updated.

When DOORS Next requirements on the server are updated or removed, you perform the automated
update of cached requirements subsets in Simulink Requirements, and you check the Links view for
flagged stale or broken links, to quickly identify the needed design or testing changes.

7 Requirements Traceability with IBM Rational DOORS

7-24

 Link with Requirements in IBM DOORS Next

7-25

Link and Trace Requirements with IBM DOORS Next
You can link and trace Simulink model elements and supported Model-Based Design artifacts to
requirements in IBM DOORS Next (formerly known as IBM DOORS Next Generation or DNG) by
importing DOORS Next requirements or by using direct linking.

Simulink Requirements imports IBM DOORS Next requirements as slreq.Reference objects,
which are also called referenced requirements. When requirements change in DOORS Next, you can
update the referenced requirements. The imported referenced requirements contribute to the
implementation status, verification status, and change tracking. For more information, see “Import
Requirements from IBM DOORS Next” on page 1-27. You can then link MATLAB or Simulink Model-
Based Design artifacts or other linkable items on page 2-32 with the referenced requirements in the
Simulink canvas or Requirements Editor. You can also navigate from the referenced requirement in
Simulink Requirements to the original requirement in DOORS Next.

With direct linking, you link directly from MATLAB or Simulink to DOORS Next artifacts. You can
establish traceability links and navigate directly from MATLAB or Simulink Model-Based Design
artifacts to DOORS Next requirements. Direct linking does not require you to create additional files,
as opposed to importing, which stores the requirements in an .slreqx file. However, the linking
process requires additional setup steps, and the IBM DOORS Next requirements are not covered by
Simulink Requirements analyses, such as implementation status, verification status, and change
tracking.

With either linking method, you can insert backlinks in DOORS Next, which are links that allow you
to navigate from the requirement in DOORS Next to the artifact in MATLAB or Simulink.

Configure IBM DOORS Next Session
To interface with IBM DOORS Next, you must configure MATLAB every session. At the MATLAB
command prompt, enter:

slreq.dngConfigure

In the DOORS Server dialog box, provide the DOORS Next server address, port number, and service
root as they appear in the web browser when accessing DOORS Next. If you do not see a port
number, enter the default value of 443. In the Server Login Name and Server Login Password dialog
boxes, enter your login credentials. In the DOORS Project dialog box, select the project and, if
applicable, the configuration context. If your configuration context is not listed in the Select
configuration stream or changeset list, load additional configurations by selecting <more>. For
more information about configurations, see “Specifying and Updating the IBM DOORS Next
Configuration” on page 7-32.

MATLAB then tests the connection in your browser. If the connection is successful, the MATLAB
Connector Test dialog box appears with a confirmation message. Click OK. If the dialog does not
appear or if an error appears after you enter slreq.dngConfigure, see the Tips section of
slreq.dngConfigure.

Linking with Referenced Requirements
Use this approach when you want to link requirements in MATLAB or Simulink and track the
implementation, verification, and change tracking in Simulink.

7 Requirements Traceability with IBM Rational DOORS

7-26

First, import requirements by selecting a DOORS Next module or by creating a query. For more
information, see “Import Requirements from IBM DOORS Next” on page 1-27.

After you import DOORS Next requirements into a requirement set, you can link these referenced
requirements the same way you link other slreq.Reference objects. For example, you can open a
Simulink model, select a model element, then select the referenced requirement in the Requirements
Editor and click Add Link > Link from Selected Simulink Object. See “Requirement Links” on
page 2-32 for more information.

Inserting Backlinks in DOORS Next

When you import requirements from DOORS Next from a module and create links to the imported
referenced requirements from items in MATLAB or Simulink, you can manually insert backlinks in the
DOORS Next module:

1 Open the Requirements Editor. At the MATLAB command prompt, enter:

slreq.editor
2 In the Requirements Editor, click Show Links in the toolstrip to view the loaded link sets.
3 Select the link set that contains the links that you want to use to insert backlinks in your DOORS

Next module. Right-click the link set and select Update Backlinks.
4 A dialog box displays the number of links that were checked for existing backlinks and the

number of backlinks added. Click OK.

You can navigate to the original requirement by selecting the requirement in the Requirements Editor
and clicking Show in Document.

When viewing DOORS Next items outside the module context, expand the Links pane, which displays
any backlinks to MATLAB or Simulink under Link to. When working in the module context, select the
item. In the right pane, select Selected Artifact, then select Artifact Links. The backlinks are
displayed under Link to.

Directly Linking DOORS Next Requirements
Use this approach when you prefer to link directly to requirements in DOORS Next. Direct links do
not require importing requirements.

After the setup is complete, you can establish direct links either by right-clicking an item and using
the context menu, or by using the Outgoing Links dialog.

Link to Selected Requirements by Using the Context Menu

When you link to requirements in DOORS Next by using the context menu, you can insert a backlink
when the link is created. You can also create the link in the module context and in the specified
stream or changeset. If you create the link in the module context and insert a backlink, the backlink
is also inserted in the module context and in the specified stream or changeset. To read more about
streams and changesets, see “Specifying and Updating the IBM DOORS Next Configuration” on page
7-32.

Install the Simulink Requirements widget in IBM DOORS Next. For more information, see “Install the
Simulink Requirements Widget in IBM DOORS Next” on page 5-3. To confirm the widget is operating
as expected, in your DOORS Next project, in the Artifacts tab, select an item and verify that the
widget contents update as expected.

 Link and Trace Requirements with IBM DOORS Next

7-27

Tip Pin the Mini Dashboard to the page so that it is always visible and you know which selected ID
is communicated to MATLAB.

You can verify that MATLAB is receiving information about your selection in DOORS Next. At the
MATLAB command prompt, enter:

oslc.selection

The returned number should correspond to the numeric ID of the selected item in the DOORS Next
browser.

When the widget is operating as expected, you can create links between Simulink linkable items and
DOORS Next in one click when you use the context menu:

1 In your DOORS Next project, select the Artifacts tab.
2 Select the requirements that you want to link to by selecting the check box next to the

requirement. The requirements that you select are displayed in the Simulink Requirements
widget in the Mini Dashboard.

3 In Simulink, right-click the Simulink model element that you want to link to the selected IBM
DOORS Next requirements. Select Requirements > Link to Selected Item(s) in DOORS Next
from the context menu.

4 The DOORS Link Target dialog appears. If the Simulink Requirements widget is functioning as
expected, then the Project Area and Requirement ID fields are populated with information
from your selection.

5 To create the link in the module context, select Link in module context. Then, set the Module
context to the module that the requirement belongs to.

6 To insert a backlink in DOORS Next, select Insert backlink. If the link is created in the module
context, the backlink is also inserted in the module context.

7 Click OK to create the link and, if selected, insert the backlink.

7 Requirements Traceability with IBM Rational DOORS

7-28

To navigate to the linked requirement in DOORS Next, right-click the same Simulink model element
and select Requirements. The link appears at the top of the context menu.

If the widget in IBM DOORS Next is unavailable or fails to communicate with MATLAB due to security
restrictions, you can create the link without selecting a requirement in DOORS Next:

1 In Simulink, right-click the Simulink model element that you want to link to the selected IBM
DOORS Next requirements. Select Requirements > Link to Selected Item(s) in DOORS Next
from the context menu.

2 The DOORS Link Target dialog box appears, but no information is populated. Set the Project
Area to the project that you want to work with.

3 In the Requirement ID field, enter the DOORS Next numeric ID of the requirement that you
want to link to.

4 To create the link in the module context, select Link in module context. Then, set the Module
context to the module that the requirement belongs to.

5 To insert a backlink in DOORS Next, select Insert backlink. If the link is created in the module
context, the backlink is also inserted in the module context.

6 Click OK to create the link and, if selected, insert the backlink.

Link to Requirements by Using the Outgoing Links Dialog Box

Creating links by using the Index tab of the Outgoing Links dialog does not require communication
between MATLAB and the system browser.

1 Right-click the Simulink model element that you want to link to IBM DOORS Next requirements.
2 Select Requirements > Open Outgoing Links dialog.
3 In the Outgoing Links dialog, click New and set Document type to DNG Requirement.

 Link and Trace Requirements with IBM DOORS Next

7-29

4 Click Browse. In the DOORS Project dialog box, select the project to work with and, depending
on the project, select the configuration context. If your configuration context is not listed in the
drop-down, load more configurations by selecting <more>.

5 The next step depends on whether you want to link to the requirement in the module context.

• If you want to create links in the module context:

1 Click the Document Index tab to see the list of module names.
2 Double-click the module that you want to link to.
3 When the list updates, select the requirement that you want to link to.

• If your project doesn't have modules or if you don't want to create the link in the module
context, enter the numeric ID of the DOORS Next link target requirement in the Location
field.

Note If you create a link to a requirement in the module context and then create more links
to requirements in the same module, the links are created in the module context.

6 To create the link, click OK or Apply to create the link.

When you create links using the Index tab in Outgoing Links dialog or by entering the ID in the
dialog, the link is created without a backlink. You can post-insert backlinks in your DOORS Next
project. See “Insert Missing Backlinks” on page 7-31.

7 Requirements Traceability with IBM Rational DOORS

7-30

Insert Missing Backlinks

If a requirement in your DOORS Next project does not contain a backlink because a backlink was not
inserted when the link was created or because the backlink was deleted, you can insert missing
backlinks:

1 Open the Simulink model or other artifact that contains direct links to requirements in DOORS
Next.

2 Open the Requirements Editor by entering the following at the MATLAB command prompt:

slreq.editor
3 Select Show Links and select the link set containing the link that does not contain a backlink.
4 Right-click the link set and select Update backlinks. The Backlinks Checked dialog appears and

displays the number of missing backlinks added.

Note When you insert missing backlinks with this method, backlinks are added for all direct links in
the link set where the destination project matches your currently configured DOORS Next project. If
your link set contains links to other DOORS Next projects, these links will not be processed. You will
need to re-run the Update backlinks procedure after re-configuring your MATLAB session for the
other project to insert backlinks in the other project.

Each backlink in DOORS Next is independent of the link stored in Simulink Requirements. If you later
decide to delete the link in Simulink, the backlink will remain in DOORS Next until manually deleted.
If you delete the backlink in DOORS Next, the change does not propagate to Simulink Requirements.

Additionally, the backlinks in DOORS Next will be visible to users of this configuration context,
including users who do not have access to the Simulink source artifact.

To read more about updating backlinks, see “Manage Navigation Backlinks in External Requirements
Documents” on page 2-50.

Navigate Between DOORS Next Requirements and Directly Linked Items

Once you've directly linked a linkable item on page 2-32 in MATLAB or Simulink to a DOORS Next
requirement, you can navigate to the requirement from MATLAB by using the Requirements Editor.

1 Open the Requirements Editor by entering the following at the MATLAB command prompt:

slreq.editor
2 Select Show Links and select the link that you want to navigate.
3 In the Details pane, under Properties, click the hyperlink next to Destination to navigate to

the requirement in DOORS Next.

If you inserted backlinks in your DOORS Next project then you can navigate from the requirement in
DOORS Next to the linked item in MATLAB or Simulink:

1 In your DOORS Next project, in the desired stream or changeset, select the Artifacts tab.
2 Select the desired requirement. If the requirement was linked in the module context, select the

requirement in that module context.
3 In the right pane, ensure the Selected Artifact tab is selected.
4 In the right pane, select Artifact Links. Backlinks are listed under Links to.
5 Click the backlink to navigate to the linked item in MATLAB or Simulink.

 Link and Trace Requirements with IBM DOORS Next

7-31

Specifying and Updating the IBM DOORS Next Configuration
Projects with configuration management enabled in IBM DOORS Next support multiple branches
called streams and changesets (which are also referred to as configurations). Simulink Requirements
enables you to update the outgoing link destination for an existing link in Simulink to the same
requirement in a different stream or changeset.

Specifying the Configuration Stream or Changeset

Select the IBM DOORS Next project and the stream or changeset you want to work with. At the
MATLAB command prompt, enter:

slreq.dngConfigure

For more information about the function, see slreq.dngConfigure.

Updating Stored Stream or Changeset by API

Simulink Requirements provides functions to manage your DOORS Next requirements when your
stream or changeset changes:

• Find the number of links in an slreq.LinkSet object to a specific DOORS Next stream or
changeset with slreq.dngCountLinks.

• Query your DOORS Next project for known streams or changesets with
slreq.dngGetProjectConfig.

• Identify streams or changesets linked in an slreq.LinkSet object with
slreq.dngGetUsedConfig.

• Update existing links to point to a different stream or changeset of the DOORS Next requirements
when the stream or changeset changes with slreq.dngUpdateConfig.

7 Requirements Traceability with IBM Rational DOORS

7-32

Using the Simulink Requirements Widget to Synchronize and Update Session Context

The Simulink Requirements widget displays information about the current configuration stream
context in Simulink Requirements. The widget indicates a mismatch between the active configuration
stream contexts in Simulink Requirements and in IBM DOORS Next by displaying and highlighting
the active Simulink Requirements configuration stream context in red:

To resolve a mismatch, click the red highlighted text in the widget and click Update in the DNG
Configuration Context Mismatch dialog box. Alternatively, you can change the active configuration
stream in IBM DOORS Next.

You can update the configuration context for existing links by either using the functions listed in
“Updating Stored Stream or Changeset by API” on page 7-32 or by using the Query Links from SL
hyperlink in the Simulink Requirements widget.

1 In DOORS Next, under the Simulink Requirements widget, click Query Links from SL. A new
window opens in the browser with a summary of links for the selected requirements in DOORS
Next.

2 Click the Managed link configurations hyperlink to display the report on DOORS Next links in
the current MATLAB session and grouped by the target configuration context attribute.

3 Click redirect for the group of links that you want to associate with a different configuration
context.

4 When the window is updated, click the stream or changeset you want to associate with.
5 Locate one of the streams or changesets whose links you updated, and confirm that the link now

brings you to the expected configuration of the linked requirement.

 Link and Trace Requirements with IBM DOORS Next

7-33

See Also
slreq.dngConfigure

Related Examples
• “Link with Requirements in IBM DOORS Next” on page 7-4

More About
• “Import Requirements from IBM DOORS Next” on page 1-27
• “Manage Navigation Backlinks in External Requirements Documents” on page 2-50

7 Requirements Traceability with IBM Rational DOORS

7-34

Navigate to Requirements in IBM Rational DOORS Databases
from Simulink

Enable Linking from IBM Rational DOORS Databases to Simulink
Objects
By default, the RMI does not insert navigation objects into requirements documents. If you want to
insert a navigation object into the requirements document when you create a link from a Simulink
object to a requirement, you must change the RMI’s settings. The following tutorial uses the
sldemo_fuelsys example model to illustrate how to do this.

To enable linking from the DOORS database to the example model:

1 Open the model sldemo_fuelsys. At the MATLAB command line, enter:

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')

Note You can modify requirements settings in the Requirements Settings dialog box. These
settings are global and not specific to open models. Changes you make apply not only to open
models, but also persist for models you subsequently open. For more information about these
settings, see “Requirements Settings” on page 5-10.

2 In the Apps tab, click Requirements Manager. In the Requirements tab, ensure that Layout
> Requirements Browser is selected. In the Requirements pane, in the View drop-down,
select Links. In the Requirements tab, select Link Settings > Linking Options.

The Requirements Settings dialog box opens.
3 Click the Selection Linking tab.
4 Select Modify destination for bidirectional linking.

When you enable this option, every time you create a selection-based link from a Simulink object
to a requirement, the RMI inserts navigation objects at the designated location. Using this option
requires write access to the requirements document.

5 Select Store absolute path to model file.

For this exercise, you save a copy of the example model on the MATLAB path.

If you add requirements to a model that is not on the MATLAB path, you must select this option
to enable linking from your requirements document to your model.

6 In the Apply this keyword to new links field, enter one or more user tags to apply to the links
that you create.

For more information about user tags, see “User Tags and Requirements Filtering” on page 5-11.
7 Click Close to close the Requirements Settings dialog box. Keep the sldemo_fuelsys model

open.

Insert Navigation Objects into IBM Rational DOORS Requirements
When you enable Modify destination for bidirectional linking as described in “Enable Linking
from IBM Rational DOORS Databases to Simulink Objects” on page 7-35, the RMI can insert a

 Navigate to Requirements in IBM Rational DOORS Databases from Simulink

7-35

navigation object into both the Simulink object and its associated DOORS requirement. This tutorial
uses the sldemo_fuelsys example model to illustrate how to do this. For this tutorial, you also need
a DOORS formal module that contains requirements.

1 Rename the sldemo_fuelsys model and save it in a writable folder on the MATLAB path.
2 Start the DOORS software and open a formal module that contains requirements.
3 Select the requirement that you want to link to by left-clicking that requirement in the DOORS

database.
4 In the sldemo_fuelsys model, select an object in the model.

This example creates a requirement from the fuel_rate_control subsystem.
5 Right-click the Simulink object (in this case, the fuel_rate_control subsystem) and select

Requirements > Link to Selection in DOORS.

The RMI creates the link for the fuel_rate_control subsystem. It also inserts a navigation
object into the DOORS formal module—a Simulink reference object () that enables you to
navigate from the requirement to the model.

6 Close the model.

Note When you navigate to a DOORS requirement from outside the software, the DOORS module
opens in read-only mode. If you want to modify the DOORS module, open the module using DOORS
software.

Insert Navigation Objects to Multiple Simulink Objects

If you have several Simulink objects that correspond to one requirement, you can link them all to that
requirement with a single navigation object. This eliminates the need to insert multiple navigation
objects for a single requirement. The Simulink objects must be available in the same model diagram
or Stateflow chart.

The workflow for linking multiple Simulink objects to one DOORS requirement is as follows:

1 Make sure that you have enabled Modify destination for bidirectional linking.
2 Select the DOORS requirement to link to.
3 Select the Simulink objects that need to link to that requirement.
4 Right-click one of the objects and select Requirements Traceability > Link to Selection in

DOORS.

A single navigation object is inserted at the selected requirement.

7 Requirements Traceability with IBM Rational DOORS

7-36

5 Double-click the navigation object in DOORS to highlight the Simulink objects that are linked to
that requirement.

Navigate Between IBM Rational DOORS Requirement and Model
Object
In “Insert Navigation Objects into IBM Rational DOORS Requirements” on page 7-35, you created a
link between a DOORS requirement and the fuel_rate_control subsystem in the
sldemo_fuelsys model. Navigate the links in both directions:

1 With the sldemo_fuelsys model closed, go to the DOORS requirement in the formal module.
2 Left-click the Simulink reference object that you inserted to select it.
3 Select MATLAB > Select item.

Your version of the sldemo_fuelsys model opens, with the fuel_rate_control subsystem
highlighted.

4 Log in to the DOORS software.
5 Navigate from the model to the DOORS requirement. In the Model Editor, right-click the

fuel_rate_control subsystem and select Requirements > 1. “<requirement name>”
where <requirement name> is the name of the DOORS requirement that you created.

The DOORS formal module opens with the requirement object and its child objects highlighted in
red.

 Navigate to Requirements in IBM Rational DOORS Databases from Simulink

7-37

Why Add Navigation Objects to IBM Rational DOORS Requirements?
IBM Rational DOORS software is a requirements management application that you use to capture,
track, and manage requirements. The Requirements Management Interface (RMI) allows you to link
Simulink objects to requirements managed by external applications, including the DOORS software.

When you create a link from a Simulink object to a DOORS requirement, the RMI stores the link data
in Simulink. Using this link, you can navigate from the Simulink object to its associated requirement.

You can also configure the RMI to insert a navigation object in the DOORS database. This navigation
object serves as a link from the DOORS requirement to its associated Simulink object.

To insert navigation objects into a DOORS database, you must have write access to the DOORS
database.

Customize IBM Rational DOORS Navigation Objects
If the RMI is configured to modify the destination for bidirectional linking as described in “Enable
Linking from IBM Rational DOORS Databases to Simulink Objects” on page 7-35, the RMI can insert
a navigation object into your requirements document. This object looks like the icon for the Simulink

software:

Note In IBM Rational DOORS requirements documents, clicking a navigation object does not
navigate back to your Simulink object. Select MATLAB > Select object to find the Simulink object
that contains the requirements link.

To use an icon of your choosing for the navigation object:

1 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings
> Linking Options.

2 Select the Selection Linking tab.
3 Select Modify destination for bidirectional linking.

Selecting this option enables the Use custom bitmap for navigation controls in documents
option.

4 Select Use custom bitmap for navigation controls in documents.
5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap image (.bmp) file for
the navigation object. Other types of image files might give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.
7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document, the RMI uses the file you
selected.

Tip You can specify a custom template for labels of requirements links to DOORS objects. For more
information, see the rmi command.

7 Requirements Traceability with IBM Rational DOORS

7-38

Synchronize Simulink Models with IBM Rational DOORS
Databases by using Surrogate Modules

Synchronize a Simulink Model to Create a Surrogate Module
The first time that you synchronize your model with the DOORS software, the DOORS software
creates a surrogate module.

In this tutorial, you synchronize the sf_car model with the DOORS software.

Note Before you begin, make sure you know how to create links from a Simulink model object to a
requirement in a DOORS database.

1 To create a surrogate module, start the DOORS software and open a project. If the DOORS
software is not already running, start the DOORS software and open a project.

2 Open the sf_car model.

openExample('sf_car.slx')
3 Rename the model to sf_car_doors, and save the model in a writable folder.
4 Create links to a DOORS formal module from two objects in sf_car_doors:

• The transmission subsystem
• The engine torque block inside the Engine subsystem

5 Save the changes to the model.
6 In the sf_car model, navigate to the Apps tab and open the Requirements Manager.
7 In the Requirements tab, select Share > Synchronize with DOORS.

The DOORS synchronization settings dialog box opens.
8 For this tutorial, accept the default synchronization options.

The default option under Extra mapping additionally to objects with links, None, creates
objects in the surrogate module only for the model and any model objects with links to DOORS
requirements.

Note For more information about the synchronization options, see “Customize IBM Rational
DOORS Synchronization” on page 7-43.

9 Click Synchronize to create and open a surrogate module for all DOORS requirements that have
links to objects in the sf_car_doors model.

After synchronization with the None option, the surrogate module, a formal module named
sf_car_doors, contains:

• A top-level object for the model (sf_car_doors)
• Objects that represent model objects with links to DOORS requirements (transmission, engine

torque), and their parent objects (Engine).

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-39

10 Save the surrogate module and the model.

Create Links Between Surrogate Module and Formal Module in an IBM
Rational DOORS Database
The surrogate module is the interface between the DOORS formal module that contains your
requirements and the Simulink model. To establish links between the surrogate module and the
requirements module, copy the link information from the model to the surrogate module:

1 Open the sf_car_doors model.
2 In the Requirements tab, select Share > Synchronize with DOORS.
3 In the DOORS synchronization settings dialog box, select two options:

• Update links during synchronization
• from Simulink to DOORS.

4 Click Synchronize.

The RMI creates links from the DOORS surrogate module to the formal module. These links
correspond to links from the Simulink model to the formal module. In this example, the DOORS
software copies the links from the engine torque block and transmission subsystems to the
formal module, as indicated by the red triangles.

7 Requirements Traceability with IBM Rational DOORS

7-40

Resynchronize IBM Rational DOORS Surrogate Module to Reflect
Model Changes
If you change your model after synchronization, the RMI does not display a warning message. If you
want the surrogate module to reflect changes to the Simulink model, resynchronize your model.

In this tutorial, you add a new block to the sf_car_doors model, and later delete it, resynchronizing
after each step:

1 In the sf_car_doors model, make a copy of the vehicle mph (yellow) & throttle % Scope block
and paste it into the model. The name of the new Scope block is vehicle mph (yellow) & throttle
%1.

2 In the Requirements tab, select Share > Synchronize with DOORS.
3 In the DOORS synchronization settings dialog box, set the Extra mapping additionally to

objects with links option to Complete - All blocks, subsystems, states, and
transitions. Click Synchronize.

After the synchronization, the surrogate module includes the new block.

4 In the sf_car_doors model, delete the newly added Scope block and resynchronize.

The block that you delete appears at the bottom of the list of objects in the surrogate module. Its
entry in the Block Deleted column reads True.

5 Save the surrogate module.
6 Save the sf_car_doors model.

Navigate with the Surrogate Module
Navigate Between Requirements and the Surrogate Module in the DOORS Database

The surrogate module and the requirements in the formal module are both in the DOORS database.
When you synchronize your model, the DOORS software creates links between the surrogate module
objects and the requirements in the DOORS database.

Navigating between the requirements and the surrogate module allows you to review the
requirements that have links to the model without starting the Simulink software.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-41

To navigate from the surrogate module transmission object to the requirement in the formal module:

1 In the surrogate module object for the transmission subsystem, right-click the right-facing red
arrow.

2 Select the requirement name.

The formal module opens, at the Transmission Requirements object.

To navigate from the requirement in the formal module to the surrogate module:

1 In the Transmission Requirements object in the formal module, right-click the left-facing
orange arrow.

2 Select the object name.

The surrogate module for sf_car_doors opens, at the object associated with the
transmission subsystem.

Navigate Between DOORS Requirements and the Simulink Module via the Surrogate Module

You can create links that allow you to navigate from Simulink objects to DOORS requirements and
from DOORS requirements to the model. If you synchronize your model, the surrogate module serves
as an intermediary for the navigation in both directions. The surrogate module allows you to navigate
in both directions even if you remove the direct link from the model object to the DOORS formal
module.

Navigate from a Simulink Object to a Requirement via the Surrogate Module

To navigate from the transmission subsystem in the sf_car_doors model to a requirement in the
DOORS formal module:

1 In the sf_car_doors model, right-click the transmission subsystem and select Requirements
> 1. “DOORS Surrogate Item”. (The direct link to the DOORS formal module is also available.)

The surrogate module opens, at the object associated with the transmission subsystem.
2 To display the individual requirement, in the surrogate module, right-click the right-facing red

arrow and select the requirement.

The formal module opens, at Transmission Requirements.

7 Requirements Traceability with IBM Rational DOORS

7-42

Navigate from a Requirement to the Model via the Surrogate Module

To navigate from the Transmission Requirements requirement in the formal module to the
transmission subsystem in the sf_car_doors model:

1 In the formal module, in the Transmission Requirements object, right-click the left-facing
orange arrow.

2 Select the path to the linked surrogate object: /sf_car Project/sf_car_doors > 4. transmission.

The surrogate module opens, at the transmission object.
3 In the surrogate module, select MATLAB > Select item.

The linked object is highlighted in sf_car_doors.

Customize IBM Rational DOORS Synchronization
DOORS Synchronization Settings

When you synchronize your Simulink model with a DOORS database, you can:

• Customize the level of detail for your surrogate module.
• Update links in the surrogate module or in the model to verify the consistency of requirements

links among the model, and the surrogate and formal modules.

The DOORS synchronization settings dialog box provides the following options during
synchronization.

DOORS Settings Option Description
DOORS surrogate module path and name Specifies a unique DOORS path to a new or an existing

surrogate module.

For information about how the RMI resolves the path
to the requirements document, see “Document Path
Storage” on page 11-35.

Extra mapping additionally to objects with links Determines the completeness of the Simulink model
representation in the DOORS surrogate module. None
specifies synchronizing only those Simulink objects
that have linked requirements, and their parent
objects. For more information about these
synchronization options, see “Customize the Level of
Detail in Synchronization” on page 7-45.

Update links during synchronization Specifies updating any unmatched links the RMI
encounters during synchronization, as designated in
the Copy unmatched links and Delete unmatched
links options.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-43

DOORS Settings Option Description
Copy unmatched links During synchronization, selecting the following options

has the following results:

• from Simulink to DOORS: For links between the
model and the formal module, the RMI creates
matching links between the DOORS surrogate and
formal modules.

• from DOORS to Simulink: For links between the
DOORS surrogate and formal modules, the RMI
creates matching links between the model and the
DOORS modules.

Delete unmatched links During synchronization, selecting the following options
has the following results:

• Remove unmatched in DOORS: For links
between the formal and surrogate modules, when
there is not a corresponding link between the
model and the DOORS modules, the RMI deletes
the link in DOORS.

This option is available only if you select the from
Simulink to DOORS option.

• Remove unmatched in Simulink: For links
between the model and the DOORS modules, when
there is not a corresponding link between the
formal and surrogate modules, the RMI deletes the
link from the model.

This option is available only if you select the from
DOORS to Simulink option.

Save DOORS surrogate module After the synchronization, saves changes to the
surrogate module and updates the version of the
surrogate module in the DOORS database.

Save Simulink model (recommended) After the synchronization, saves changes to the model.
If you use a version control system, selecting this
option changes the version of the model.

Resynchronize a Model with a Different Surrogate Module

You can synchronize the same Simulink model with a new DOORS surrogate module. For example,
you might want the surrogate module to contain only objects that have requirements to DOORS,
rather than all objects in the model. In this case, you can change the synchronization options to
reduce the level of detail in the surrogate module:

1 In the DOORS synchronization settings dialog box, change the DOORS surrogate module path
and name to the path and name of the new surrogate module in the DOORS database.

2 Specify a module with either a relative path (starting with ./) or a full path (starting with /).

The software appends relative paths to the current DOORS project. Absolute paths must specify a
project and a module name.

7 Requirements Traceability with IBM Rational DOORS

7-44

When you synchronize a model, the RMI automatically updates the DOORS surrogate module
path and name with the actual full path. The RMI saves the unique module ID with the module.

3 If you select a new module path or if you have renamed the surrogate module, and you click
Synchronize, the Requirements: Surrogate Module Mismatch dialog box opens.

4 Click Continue to create a new surrogate module with the new path or name.

Customize the Level of Detail in Synchronization

You can customize the level of detail in a surrogate module so that the module reflects the full or
partial Simulink model hierarchy.

In “Synchronize a Simulink Model to Create a Surrogate Module” on page 7-39, you synchronized the
model with the Extra mapping additionally to objects with links option set to None. As a result,
the surrogate module contains only Simulink objects that have requirement links, and their parent
objects. Additional synchronization options, described in this section, can increase the level of
surrogate detail. Increasing the level of surrogate detail can slow down synchronization.

The Extra mapping additionally to objects with links option can have one of the following values.
Each subsequent option adds additional Simulink objects to the surrogate module. You choose None
to minimize the surrogate size or Complete to create a full representation of your model. The
Complete option adds all Simulink objects to the surrogate module, creating a one-to-one mapping of
the Simulink model in the surrogate module. The intermediate options provide more levels of detail.

Drop-Down List Option Description
None (Recommended for better
performance)

Maps only Simulink objects that have requirements links and their
parent objects to the surrogate module.

Minimal - Non-empty unmasked
subsystems and Stateflow charts

Adds all nonempty Stateflow charts and unmasked Simulink
subsystems to the surrogate module.

Moderate - Unmasked subsystems,
Stateflow charts, and superstates

Adds Stateflow superstates to the surrogate module.

Average - Nontrivial Simulink
blocks, Stateflow charts and
states

Adds all Stateflow charts and states and Simulink blocks, except
for trivial blocks such as ports, bus objects, and data-type
converters, to the surrogate module.

Extensive - All unmasked blocks,
subsystems, states and
transitions

Adds all unmasked blocks, subsystems, states, and transitions to
the surrogate module.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-45

Drop-Down List Option Description
Complete - All blocks,
subsystems, states and
transitions

Copies all blocks, subsystems, states, and transitions to the
surrogate module.

Resynchronize to Include All Simulink Objects

This tutorial shows how you can include all Simulink objects in the DOORS surrogate module. Before
you start these steps, make sure you have completed the tutorials “Synchronize a Simulink Model to
Create a Surrogate Module” on page 7-39 and “Create Links Between Surrogate Module and Formal
Module in an IBM Rational DOORS Database” on page 7-40.

1 Open the sf_car_doors model that you synchronized in “Synchronize a Simulink Model to
Create a Surrogate Module” on page 7-39 and again in “Create Links Between Surrogate Module
and Formal Module in an IBM Rational DOORS Database” on page 7-40.

2 In the Requirements tab, select Share > Synchronize with DOORS.

The DOORS synchronization settings dialog box opens.
3 Resynchronize with the same surrogate module, making sure that the DOORS surrogate

module path and name specifies the surrogate module path and name that you used in
“Synchronize a Simulink Model to Create a Surrogate Module” on page 7-39.

For information about how the RMI resolves the path to the requirements document, see
“Document Path Storage” on page 11-35.

4 Update the surrogate module to include all objects in your model. To do this, under Extra
mapping additionally to objects with links, from the drop-down list, select Complete - All
blocks, subsystems, states and transitions.

5 Click Synchronize.

After synchronization, the DOORS surrogate module for the sf_car_doors model opens with
the updates. All Simulink objects and all Stateflow objects in the sf_car_doors model are now
mapped in the surrogate module.

7 Requirements Traceability with IBM Rational DOORS

7-46

6 Scroll through the surrogate module. Notice that the objects with requirements (the engine
torque block and transmission subsystem) retain their links to the DOORS formal module, as
indicated by the red triangles.

7 Save the surrogate module.

Detailed Information About The Surrogate Module You Created

Notice the following information about the surrogate module that you created in “Resynchronize to
Include All Simulink Objects” on page 7-46:

• The name of the surrogate module is sf_car_doors, as you specified in the DOORS
synchronization settings dialog box.

• DOORS object headers are the names of the corresponding Simulink objects.
• The Block Type column identifies each object as a particular block type or a subsystem.
• If you delete a previously synchronized object from your Simulink model and then resynchronize,

the Block Deleted column reads true. Otherwise, it reads false.

These objects are not deleted from the surrogate module. The DOORS software retains these
surrogate module objects so that the RMI can recover these links if you later restore the model
object.

• Each Simulink object has a unique ID in the surrogate module. For example, the ID for the
surrogate module object associated with the Mux block in the preceding figure is 11.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-47

• Before the complete synchronization, the surrogate module contained the transmission subsystem,
with an ID of 3. After the complete synchronization, the transmission object retains its ID (3), but
is listed farther down in the surrogate module. This order reflects the model hierarchy. The
transmission object in the surrogate module retains the red arrow that indicates that it links to a
DOORS formal module object.

Synchronization with IBM Rational DOORS Surrogate Modules
Synchronization is a user-initiated process that creates or updates a DOORS surrogate module. A
surrogate module is a DOORS formal module that is a representation of a DOORS model hierarchy.

When you synchronize a model for the first time, the DOORS software creates a surrogate module.
The surrogate module contains a representation of the model, depending on your synchronization
settings. (To learn how to customize the links and level of detail in the synchronization, see
“Customize IBM Rational DOORS Synchronization” on page 7-43.)

If you create or remove model objects or links, keep your surrogate module up to date by
resynchronizing. The updated surrogate module reflects any changes in the requirements links since
the previous synchronization.

Note The RMI and DOORS software both use the term object. In the RMI, and in this document, the
term object refers to a Simulink model or block, or to a Stateflow chart or its contents.

In the DOORS software, object refers to numbered elements in modules. The DOORS software
assigns each of these objects a unique object ID. In this document, these objects are referred to as
DOORS objects.

You use standard DOORS capabilities to navigate between the Simulink objects in the surrogate
module and requirements in other formal modules. The surrogate module facilitates navigation
between the Simulink model object and the requirements, as the following diagram illustrates.

7 Requirements Traceability with IBM Rational DOORS

7-48

Advantages of Synchronizing Your Model with a Surrogate Module
Synchronizing your Simulink model with a surrogate module offers the following advantages:

• You can navigate from a requirement to a Simulink object without modifying the requirements
modules.

• You avoid cluttering your requirements modules with inserted navigation objects.
• The DOORS database contains complete information about requirements links. You can review

requirements links and verify traceability, even if the Simulink software is not running.
• You can use DOORS reporting features to analyze requirements coverage.
• You can separate the requirements tracking work from the Simulink model developers' work, as

follows:

• Systems engineers can establish requirements links to models without using the Simulink
software.

• Model developers can capture the requirements information using synchronization and store it
with the model.

• You can resynchronize a model with a new surrogate module, updating any model changes or
specifying different synchronization options.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-49

Working with IBM Rational DOORS 9 Requirements
How to import, link, and update requirements from IBM® Rational® DOORS® 9. Working with
DOORS 9 is supported on Microsoft Windows®.

Setup for IBM Rational DOORS

Configure the requirements management interface for interaction with IBM Rational DOORS by
following the instructions in “Configure Simulink Requirements for Interaction with Microsoft Office
and IBM Rational DOORS” on page 5-2.

Overview of Workflow with DOORS

You can import requirements from DOORS into the Simulink environment, then establish traceability
from your model to DOORS requirements through the imported references. Traceability is bi-
directional. If DOORS requirements change, you can update the references in Simulink Requirements
while maintaining traceability. Additionally:

7 Requirements Traceability with IBM Rational DOORS

7-50

• You can establish traceability from MATLAB and Simulink to DOORS without modifying DOORS
Formal or Link modules.

• You can link between design, tests, and requirements without leaving the Simulink Editor.
• You can establish traceability from low-level requirements in Simulink to high-level requirements

in DOORS.
• You can identify gaps in implementation and verification using metrics in Simulink Requirements.
• Change detection and cross-domain traceability can be used to conduct change impact analysis.

If you have existing Simulink artifacts that are linked to DOORS with previous versions of the
Requirements Management Interface, update your existing links. See the Update Model Link
Destinations section in “Migrating Requirements Management Interface Data to Simulink®
Requirements™” on page 5-16.

Import a DOORS Module

You can import a DOORS requirements module or a subset of requirements from a module by using a
filter. For more information, see “Import Requirements from IBM Rational DOORS” on page 1-33.

To navigate between the imported requirements references and DOORS:

• Select an imported requirements reference and click Show in document to navigate to DOORS.
• Select MATLAB > Select Item in DOORS to navigate to the imported requirements reference.

If your DOORS module has links between DOORS items, you may use additional commands to bring
links into the requirements set. Also, if your DOORS module has links to Simulink models, use link
synchronization to bring the links into the requirements set. See the section Copying Link
Information from DOORS to Simulink in “Managing Requirements for Fault-Tolerant Fuel Control
System (IBM Rational DOORS)” on page 7-59.

Before you import your DOORS module, be sure that you've added all desired requirements
attributes. You cannot import additional attributes to Simulink Requirements after the original
import.

Link to Your Model

You can link imported requirements to Simulink blocks by dragging items from the Requirements
Browser to items in your model. Open the Requirements Perspective in the model window by clicking
the icon at the lower right of the window and selecting the Requirements tile.

When you open the Requirements Perspective and select a requirement, links are displayed in the
Property Inspector under Links. You can:

• Navigate to linked artifacts outside the current model.
• Delete links by pointing to the link and clicking the red cross.
• Check and modify link properties by selecting Links from the View drop-down.

 Working with IBM Rational DOORS 9 Requirements

7-51

You can link imported requirements to entities such as test cases, MATLAB code, data dictionaries,
and other requirements. For more information, see “Link to Test Cases from Requirements” and
“Working with IBM Rational DOORS 9 Requirements” on page 7-50.

Update Requirements to Reflect DOORS Changes

If the source requirements in DOORS change, you can update the imported references in Simulink
Requirements.

• Select the top-level node that corresponds to updated DOORS module.
• Click the Update button.

Follow the steps in “Update Imported Requirements” on page 1-52.

If you have added attributes to your DOORS module since the original import to Simulink
Requirements, the new attributes are not imported. If you want to import attributes from your
DOORS module, be sure to add them before importing to a new requirement set in Simulink
Requirements.

Synchronizing Links and Navigation from DOORS

You can bring traceability data into DOORS for easier navigation from original requirements to
design and tests. To synchronize your Simulink Requirements links into DOORS:

• Select Links from the View drop-down.
• Locate and right-click the Link Set that has new links.

7 Requirements Traceability with IBM Rational DOORS

7-52

• Select Update Backlinks shortcut at the bottom of context menu.

Simulink Requirements analyzes outgoing links in the Link Set and checks for incoming links from
applications that support backlinks insertion, including DOORS.

• Missing links are added to the external document. In DOORS, links appear as outgoing External
Links and correspond to Simulink entities, such as a blocks or test cases in Simulink Test.

• Linked documents are checked for stale links, where there is no matching link from Simulink to
this external requirement.

• You can delete unmatched links from the DOORS module by confirming the prompt.
• A short report dialog is displayed on successful completion of Update Backlinks action:

After performing Update Backlinks step, review your linked requirements in DOORS module - you
should see links to MATLAB or Simulink. You may see multiple links if same requirement is linked to
multiple elements. Click the link in DOORS to navigate:

See “Manage Navigation Backlinks in External Requirements Documents” on page 2-50 for general
information about managing links from external documents.

Embedded HTTP Connector

Navigation from external applications to MATLAB/Simulink relies on the built-in HTTP server in
MATLAB. Simulink Requirements will fail to insert a link in external application unless the MATLAB's
built-in HTTP server is active on the correct port number.

If you see the following error popup when performing Update Backlinks action, this indicates that
HTTP server is not in the correct state:

 Working with IBM Rational DOORS 9 Requirements

7-53

Use the connector.port command-line API to check the status of HTTP server, and use
rmi('httpLink') API to activate the server if connector.port command returns 0.

Update Backlinks feature requires that HTTP server is activated for port 31415. If
connector.port command returns a higher number, this indicates that port number 31415 was
taken by some other process when this instance of MATLAB was started. You will need to:

• Save your work and quit all instances of MATLAB.
• Restart only one instance of MATLAB.
• Check HTTP server status by running connector.port command.
• If you get 0, rerun rmi('httpLink') command.
• Re-check using connector.port command - you should now see 31415 port activated.
• Re-open your MBD artifacts and retry Update Backlinks procedure.

Tracing to DOORS Module Baseline

At some point after linking MBD artifacts with requirements in DOORS, you may have created
Baselines for linked modules. By default, your links stored in Simulink Requirements will still
navigate to the current version of the linked modules. If you want to lock your design version to a
baseline version of requirements, Simulink Requirements allows you to specify a Baseline number for
each DOORS module you are linking with. You can choose to configure the preferred DOORS baseline
numbers for all linked artifacts in your current MATLAB session, or you can specify a different
DOORS baseline number, for specified MBD artifacts.

• slreq.cmConfigureVersion is the command-line API that you use to specify your preferred
DOORS baseline numbers.

• Use slreq.cmGetVersion command to check the configured DOORS baseline number for a
given DOORS module.

7 Requirements Traceability with IBM Rational DOORS

7-54

• If you later created next version baselines for linked modules, and if you want navigation of
previously stored links to target the later baseline, you rerun slreq.cmConfigureVersion
command to specify the updated baseline number.

• Per-artifact values are stored with the corresponding Link Sets and will affect navigation for all
users of same Link Set files.

• Global (session-scope) assignments are stored in user preferences. Your next MATLAB session on
the same installation remembers your previously configured baseline numbers. If you shared your
work with other users, each user will need to re-enter the same preferred baseline numbers. If
needed, you can include the required configuration commands in your MATLAB startup script or
in your Simulink Project startup script.

Repair Links to Previously Imported References After Module Prefix Changed in DOORS

When requirements change in DOORS, you perform the Update action to bring updated DOORS
contents into previously imported Requirements Set. The process relies on matching DOORS object
IDs with Custom IDs of previously imported items to determine which existing references need
update, and which DOORS objects are new and require creation of new references in Simulink
Requirements Set. Also, when updates received from DOORS do not include some Custom IDs that
are present in Simulink Requirement Set, the corresponding items are assumed to be deleted in
DOORS, and will be cleaned-up from Simulink Requirements Set. With this comes the following
danger: if DOORS user has modified the module prefix in DOORS before performing the Update for
Simulink Requirements Set, none of the existing Custom IDs will match, because DOORS module
prefix is a part of ID, and all IDs known on Simulink Requirements side are based on the old prefix.
Update process will remove all existing references and will then create new ones with Custom IDs
that correspond to updated prefix in DOORS. If previously imported references where linked with
design artifacts on Simulink side, all the links will be broken, because the originally linked references
no longer exist. For example, if the original module prefix in DOORS was "KKK" and this was changed
to "QQQ", you will see QQQ-based IDs in the Requirements Browser after performing Update,

... but the links will still point to KKK-based items as destinations. You will see orange warning
triangles on all the links that got broken:

 Working with IBM Rational DOORS 9 Requirements

7-55

You can repair broken links by performing the following steps:

1 identify the original DOORS IDs in LinkSet data,
2 construct the expected updated DOORS IDs based on your knowledge of the original and current

module prefix,
3 rely on reconstructed IDs to locate the matching Requirement Set entry for each broken link

destination,
4 update each broken link to connect with the updated reference in Requirement set.

If an older copy of Requirement Set file is still available, you can collect the SID->CustomID mapping
from it. But if you only have the updated version of the Requirement Set, and the links are already
broken, you may be able to pull old DOORS IDs from the stored link labels (from link.Description
values).

The following script demonstrates accomplishing this task for the case when all stored
link.Description labels start with the DOORS ID. In our example the labels look like "KKK123:
DOORS Object Text or Heading", and we assume that DOORS item with old ID "KKK123" now has
DOORS ID "QQQ123".

7 Requirements Traceability with IBM Rational DOORS

7-56

Run this script with four input arguments: LinkSet name, ReqSet name, old prefix, new prefix:

 Working with IBM Rational DOORS 9 Requirements

7-57

Now all the links are resolved and labels are updated correctly:

See Also

Related Examples
• “Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)” on

page 7-59
• “Import Requirements from IBM Rational DOORS by using the API” on page 1-87

More About
• “Configure Simulink Requirements for IBM Rational DOORS Software” on page 7-2
• “Import Requirements from IBM Rational DOORS” on page 1-33

7 Requirements Traceability with IBM Rational DOORS

7-58

Managing Requirements for Fault-Tolerant Fuel Control System
(IBM Rational DOORS)

The Requirements Management Interface (RMI) provides tools for creating and reviewing links
between Simulink objects and requirements documents. This example illustrates linking model
objects to requirements stored in IBM Rational DOORS. For more information using the RMI, see
“Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)” on page 6-14.

Setup RMI for DOORS

Make sure your DOORS installation is configured for communication with RMI. Run MATLAB as
Administrator and execute rmi('setup'). If DOORS Client installation is detected, RMI will prompt
to install the required API files. You only have to do this once after reinstalling either DOORS or
MATLAB. For more information, see “Configure Simulink Requirements for Interaction with Microsoft
Office and IBM Rational DOORS” on page 5-2.

Simulink Model and DOORS Modules Used in this Example

For the purposes of this example, an example model of a fault-tolerant fuel control system called
slvnvdemo_fuelsys_doorsreq.slx is included. Use it for the exercises presented below.

Open the Simulink model manually or by evaluating the following code.

open_system('slvnvdemo_fuelsys_doorsreq');

You can use any temporary DOORS module for basic link creation exercises below, and you can use
the included DemoRMI.dpa archive for a more advanced exercise of Surrogate Module
Synchronization.

Set Up Requirements Manager to Work with Links

1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements Browser, in the View drop-down menu, select Links.

In this example, you will work exclusively in the Requirements tab and any references to toolstrip
buttons are in this tab.

Linking via Outgoing Link Dialog

You can link a model object to requirements stored in a DOORS database (DOORS objects). You do
not need to modify DOORS documents when creating links. The most hands-on way to create new
links is via Outgoing Link dialog. This requires manually filling-in link attribute fields. See next
subsection for an easier automated way.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-59

• Navigate to the Metered Fuel Scope block.

rmidemo_callback('locate','slvnvdemo_fuelsys_doorsreq/Metered Fuel');

• Right-click the block and select Requirements > Open Outgoing Links dialog... from the
context menu. The Outgoing Link dialog opens.

• Click New to create a new requirement.
• Select DOORS Item in the Document type drop-down box.

• Specify a unique target module ID in the Document input field or use the Browse button to
select the target module in DOORS database.

• Enter target object ID in the Location Identifier field, or use the Document Index tab to select
the target object in a chosen module.

• Click Apply or OK to store the new requirement link.
• Right-click the same Simulink block again to see the new link label listed in the top portion of the

context menu.

Linking via Context Menu Shortcuts

An easier way to establish new links is via Selection Linking Shortcuts. Right-click a block and select
Requirements > Link to Selection in DOORS.

7 Requirements Traceability with IBM Rational DOORS

7-60

Links creation via context menu shortcuts do not require any manual input. Link target destination is
determined by the current selection in DOORS, and the Description field is set to the corresponding
Object Heading or to DOORS Object Text when there is no Heading. Because the Description is used
for navigation shortcuts in context menus, number of characters limit applies.

RMI supports bidirectional linking with requirements in DOORS, but you will start with one-
directional links. Disable bi-directional linking in the Requirements tab of the model by clicking
Link Settings > Linking Options and unchecking Modify destination for bidirectional linking
under the When creating selection-based links.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-61

Alternatively, you can evaluate the following code.

rmipref('BiDirectionalLinking', false);

We will cover bidirectional linking later. Now try this out:

• Select any object in your test module in DOORS.
• Navigate to the throttle sensor block.

rmidemo_callback('locate','slvnvdemo_fuelsys_doorsreq/throttle sensor');

• Right click the block and select Requirements > Link to Selection in DOORS in the context
menu to create a link.

• Right-click the throttle sensor block again and locate the link label at the top of
Requirements context menu to confirm that the link was added. You may use Outgoing Link
dialog later to adjust the description label or User Tag keywords.

Current Selection Linking via Outgoing Link Dialog

The Use current button in the Outgoing Link dialog box provides a combined approach:

• Right-click a block in the model and select Requirements > Open Outgoing Links dialog...
from the context menu.

• Push the New button to add another link item.

7 Requirements Traceability with IBM Rational DOORS

7-62

• Select DOORS Item in the Document type drop-down box.
• In DOORS module window, click on the object that you want to link.
• Click the Use current button to automatically fill in all the input fields with the data from the

current selected DOORS object.
• Adjust the Description as required.
• Save the changes by clicking OK or Apply.

You can also use the Use current button to redirect an existing link:

• Select the required new target object in DOORS.
• In Outgoing Link dialog, click on the list item you want to update.
• Click the Use current button to update link attributes.

Viewing and Navigating Links from Simulink to DOORS

You highlight and navigate DOORS links in the same way you do that with other types of links.

• In the Requirements tab, click Highlight Links to highlight all requirements in the example
model. You can also evaluate the following to highlight the links.

rmi('highlightModel', 'slvnvdemo_fuelsys_doorsreq');

• Make sure DOORS is running and logged in.
• Right-click on one of the highlighted objects that you used to create new links in the previous

section.
• Select Requirements from the context menu. The labels of the links you created should be visible

at the top.
• Click on the link label. Your test module opens in DOORS with the correct object selected.

Be careful to only try this with the links you created. There are other links in the model that will not
work just yet. We will cover fixing those links in sections below.

About Surrogate Modules and Synchronization

Surrogate module workflow is supported for DOORS to allow two-way linking without needing to
modify DOORS requirements modules. The following picture illustrates the workflow.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-63

A new formal DOORS module, referred as a surrogate module, is automatically generated by
Simulink to be used as a DOORS representation of the Simulink model. You can choose to map all the
objects in your model, or only those with links to DOORS, or pick one of the intermediate options as
discussed in the documentation.

You can create direct links to requirements in DOORS, as demonstrated in previous sections (marked
3 in the picture) and optional matching direct links from DOORS documents to Simulink objects, as
demonstrated in the last section of this example (marked 2 in the picture).

Additionally, with the surrogate module present in DOORS, you can establish links within DOORS
between the items in surrogate modules and requirements stored in DOORS (marked 1 in the
picture), while navigation to and from Simulink is provided by surrogate item links (marked 4 in the
picture).

Surrogate module workflow provides the following advantages:

7 Requirements Traceability with IBM Rational DOORS

7-64

• Bidirectional linking is possible without the need to modify documents in DOORS or the models in
Simulink. All required information is stored in the surrogate modules and corresponding link
modules.

• You can manage and analyze links in the DOORS environment without necessarily running
Simulink, including using the native reporting capabilities of DOORS.

Below is an example screenshot of the autogenerated Surrogate module. Note that DOORS hierarchy
mirrors the structure of the originating Simulink model, and DOORS object headers match Simulink
object names:

Synchronizing Your Simulink Model with a DOORS Database

Normally, you would navigate to the Requirements tab in your Simulink model and use Share >
Synchronize with DOORS to create a new DOORS surrogate module for your Simulink model.

For the purposes of this example, an existing DOORS project is provided as an archive, including the
surrogate module with links to other modules. To try out the interactive features of this example,
restore the project into your DOORS database, and then re-synchronize the example model as
explained below. Note that this archive was created in DOORS version 9.1 and may not work with
earlier versions of DOORS.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-65

• Use the File > Restore feature in DOORS and point it to DemoRMI.dpa archive provided in the
present working directory. If your already have a project named DemoRMI in your DOORS
database, DOORS appends a number to the project name. As shown in the screenshot below, the
project includes one link module and three formal modules. One formal module is the DOORS
surrogate for the slvnvdemo_fuelsys_doorsreq model; the other two are example modules
produced by importing Microsoft Word documents from “Managing Requirements for Fault-
Tolerant Fuel Control System (Microsoft Office)” on page 6-14.

• Extract all the included modules and open the surrogate module.
• Note the red and orange link navigation triangles in two of the extracted modules. Right-click to

navigate between modules. These links are preserved through the backup-restore procedure.

7 Requirements Traceability with IBM Rational DOORS

7-66

Try navigating from the extracted surrogate module to the corresponding object in Simulink from
DOORS:

• Click 1.11.4.1 fuel rate in the slvnvdemo_fuelsys_doorsreq surrogate module.
• In main menu of the module window, click MATLAB > Select Item. A correct subsystem diagram

opens and the corresponding input is highlighted.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-67

Navigation from Simulink objects to the surrogate module is broken, because the extracted modules
have new numeric IDs in your DOORS database, trying to navigate DOORS Surrogate Item link on
any object will produce an error. To repair DOORS Surrogate Item links on all objects in the
slvnvdemo_fuelsys_doorsreq model after you have successfully restored the DemoRMI
project, resynchronize the Simulink model with the restored instance of the surrogate.

• In the model window, select the Requirements tab and then click Share > Synchronize with
DOORS to open a the Synchronization Settings dialog box.

• Enter the following settings, using the correct DOORS path for in the DOORS surrogate module
path and name input field, depending on the location of the restored project, or simply make it a
current project in DOORS and use "./" notation: enter "./slvnvdemo_fuelsys_doorsreq".

7 Requirements Traceability with IBM Rational DOORS

7-68

• Do not enable the Save Simulink model checkbox at the bottom, you will not be able to save
changes to example model unless you use a writable copy.

• Simulink might warn you about the previous synchronization path. Click Continue to proceed
with the new path. You may get the following message in the command window: "No update
needed for the surrogate module". Your restored surrogate module is correct as is.

• Retry navigation from any object in the model to corresponding DOORS object in the surrogate
module by right clicking the Simulink block and selecting Requirements > 1. "DOORS
Surrogate Item" on the context menu. This should now highlight the corresponding DOORS item
in the surrogate module.

Using Model Advisor for RMI Consistency Checking

The example model comes with some pre-existing links to DOORS document, FuelSys Design
Description module. Similarly to the original DOORS Surrogate Item links, these links are broken,
because the restored copy of the module has a new ID in your local database. For example, right-click
the Airflow calculation subsystem in the model and select "1.2.1 Mass Airflow estimation" from
the Requirements context menu. This will produce an error message. Evaluate the following code to
navigate to the Airflow calculation block.

rmidemo_callback('locate',['slvnvdemo_fuelsys_doorsreq/fuel rate controller/' ...
 'Airflow calculation']);

We will now fix these links using RMI consistency checking in Model Advisor.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-69

• In the Simulink model window in the Requirements tab, click Check Consistency to bring up
the Model Advisor graphical interface.

• Locate Identify requirement links with missing documents item under Requirements
consistency checking and select it with a mouse.

• Click Run This Check button at the top-left of the right-hand panel. Blocks with broken links are
listed. You can fix listed inconsistencies one-by-one or, in the Model Advisor pane you can use Fix
All link at the bottom. We will use the Fix All shortcut, because we know that all broken links
need to be redirected to the same restored copy of the original module.

7 Requirements Traceability with IBM Rational DOORS

7-70

• In the Model Advisor pane, click Fix All link at the bottom - DOORS database browser comes up.

• Locate the restored FuelSys Design Description module in your database and select it with a
mouse.

• Click OK to close DOORS database browser.
• Click Run This Check again. The check should now pass.
• Re-try navigation: right-click the Airflow calculation subsystem in the model and select

Requirements > "1.2.1 Mass Airflow estimation" from the context menu. This will now
highlight the correct object in one of the DOORS modules you restored from the included archive.

Copying Link Information from Simulink to DOORS

Now that your direct links from Simulink to DOORS are correct, you can use synchronization to copy
link information into the DOORS database. Links will be duplicated in the DOORS project, where you
can use native DOORS navigation, analysis and reporting tools. These links between the surrogate
and other DOORS modules can even be reused with a new copy of the model.

• Re-open Share > Synchronize with DOORS dialog and configure the following settings. Make
sure to disable the Remove unmatched in DOORS checkbox, because there are unmatched links
in the restored project that you need later.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-71

• Click Synchronize button at the bottom.
• Give it a couple of seconds and check the surrogate module in DOORS. It should now display more

links - some that existed in the original restored project (links to the FuelSys Requirements
Specification module), and some that were just copied from Simulink (links to the FuelSys
Design Description module).

• Locate the Airflow calculation subsystem.

rmidemo_callback('locate',['slvnvdemo_fuelsys_doorsreq/fuel rate controller/' ...
 'Airflow calculation']);

• Navigate to the corresponding surrogate object using the Requirements > 1. "DOORS
Surrogate Item" on the context menu for this block.

• The new red triangle shows an outgoing link for 1.12.5 Airflow calculation item in DOORS.
Right-click to navigate this DOORS link - this brings you to item 1.2.1 Mass airflow estimation
in the FuelSys Design Description module.

Copying Link Information from DOORS to Simulink

Synchronization via surrogate module provides a convenient way to propagate system requirements
updates in DOORS to corresponding Simulink implementation elements. To demonstrate this
workflow, the restored project contains DOORS links from the surrogate module to the FuelSys
Requirements Specifications DOORS module that are not present in the Simulink model. In

7 Requirements Traceability with IBM Rational DOORS

7-72

DOORS, navigate back to the module that you restored in the section "Synchronizing Your Simulink
Model with a DOORS Database".

• Starting in the FuelSys Requirements Specification module, locate 2.1 Normal Mode of
Operation.

• Use the DOORS link to navigate to the "1.11.3 fuel" item in the surrogate module by right-clicking
the yellow link in the DOORS module, and clicking through on the context menu to navigate to
"1.11.3 fuel" item in the slvnvdemo_fuelsys_doorsreq DOORS module.

• While "1.11.3 fuel" is selected, click MATLAB > Select Item in the surrogate module main menu
to locate the corresponding source object in Simulink model.

• Right-click the located fuel input element in Simulink and check Requirements in the context
menu. 1. "DOORS Surrogate Item" is the only available link: there are no links to documents.

To copy link information from DOORS to Simulink, re-synchronize with Update links during
synchronization enabled, and select from DOORS to Simulink.

• Re-open the Share > Synchronize with DOORS dialog.
• Configure the following synchronization options:

It is now OK to enable Remove unmatched in Simulink checkbox. After the previous
synchronization step, there are no unmatched links in Simulink.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-73

Keep some diagrams open and highlighted to visualize changes when new links are added in
Simulink.

• Click Synchronize. The surrogate module window may come up to the front, but there are no red
markers, because there are no changes in DOORS.

• Navigate back to the fuel input in Simulink, or evaluate the following.

rmidemo_callback('locate','slvnvdemo_fuelsys_doorsreq/engine gas dynamics/fuel');

• Right-click and expand the Requirements Traceability section of the context menu. Notice the
new link below the DOORS Surrogate Item link: "->2.1 Normal Mode of Operation". The arrow
prefix indicates that this requirement was not created in Simulink but copied from DOORS.

• Click the new link to navigate to the corresponding requirement in DOORS - 2.1 Normal Mode
of Operation section opens in FuelSys Requirements Specification module.

Review Your Changes Using User Tags

You now apply the user tag filter to confirm the changes you made to the model. All DOORS
requirements that existed in the original version of the example model were tagged "design". You now
use this fact to selectively highlight or hide these links:

• Navigate back to the fuel rate controller subsystem and in the Requirements tab, click
Highlight Links.

rmidemo_callback('open_highlight','slvnvdemo_fuelsys_doorsreq/fuel rate controller');

• In the Requirements tab, click Link Settings > Linking Options to open the Requirements
Settings dialog.

• Navigate to the Filters tab and configure as shown below, checking the Filter links by keywords
when highlighting and reporting requirements box and entering design in the Include
links with any of these tags field.

7 Requirements Traceability with IBM Rational DOORS

7-74

• Check the highlighted objects in diagrams. These are the links that existed in the original model.
• Now modify the Filters settings as shown below to exclude "design" links:

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-75

• Check the Simulink model. The highlighting now points to links you have just copied from DOORS
database.

Removing Links in Simulink and DOORS

Synchronization also allows you to maintain consistency when links are removed. For example:

• Navigate to the fuel input again.

rmidemo_callback('locate','slvnvdemo_fuelsys_doorsreq/engine gas dynamics/fuel');

• Right-click, select Requirements > Open Outgoing Links Dialog....
• Select the "->2.1 Normal Mode of Operation" item in the dialog.
• Click Delete button to remove the item from the list.
• Click OK to apply the changes.
• Check the context menu again to confirm that the link is gone.
• Note that the link is still present in DOORS, connecting 1.11.3 fuel in the surrogate module to

"2.1 Normal Mode of Operation" in the FuelSys Requirements Specification module.
• Purge the removed link from DOORS by re-running synchronization with link updates option set to

Simulink to DOORS and the Remove unmatched in DOORS checkbox enabled.

7 Requirements Traceability with IBM Rational DOORS

7-76

• Click Synchronize. Observe the link in DOORS disappear.

Similarly, when links are removed in DOORS and you need to propagate the changes to Simulink,
rerun synchronization with the DOORS to Simulink option selected and Remove unmatched in
Simulink checkbox enabled.

Optional Direct Links from DOORS to Simulink

When using selection linking with DOORS, you have an option to automatically insert reference
objects into DOORS documents to enable direct navigation from DOORS to Simulink without the need
for the surrogate module.

WARNING: The DOORS document is modified when you use this feature of RMI.

• In the Requirements tab, click Link Settings > Linking Options to open the Requirements
Settings dialog.

• Enable the Modify destination for bidirectional linking checkbox.

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-77

Now, when you use selection linking, Simulink creates navigation objects. There are two types of
references to choose from. When Use ActiveX for incoming links option at the bottom of Selection
Linking tab is ON, RMI will insert new DOORS objects with Simulink icon and destination object
label as DOORS Object Text. With Use ActiveX... option OFF, RMI will insert External Link
hyperlinks. For the following exercise, try both options and decide what works best for you.

• Locate and select "2.2.6 Speed Sensor Failure" in FuelSys Requirements Specification module.
• Locate the Speed Estimate block in the Simulink model.

rmidemo_callback('locate',['slvnvdemo_fuelsys_doorsreq/fuel rate controller/' ...
 'Sensor correction and Fault Redundancy/Speed Estimate']);

• Right-click the block and select Requirements > Link to Selection in DOORS.
• Observe the new object inserted as the first child of the target object in DOORS.

7 Requirements Traceability with IBM Rational DOORS

7-78

• Click the just inserted navigation object in DOORS, or use MATLAB > Select Item from the main
menu of the DOORS module window.

• When using External Link hyperlinks, navigate the MATLAB hyperlink in the expanded cascade
of right-click context menu.

• The correct diagram opens in Simulink and the linked block is highlighted.

Note: You have just enabled navigation from DOORS to Simulink model without needing to save any
changes in the model. Consider this workflow when modifications to models need to be avoided.

Normally, when the Simulink model is saved after creating links, two-way navigation is possible while
bypassing the complexity of surrogate synchronization process. However, there is the disadvantage of
cluttering DOORS documents with Simulink navigation objects.

To avoid making unintentional modifications to your DOORS documents, re-open the Requirements
Settings dialog to the Selection Linking tab and disable Modify destination for bidirectional
linking checkbox.

Cleanup

Cleanup commands. Clears open requirement sets without saving changes, and closes open models
without saving changes.

slreq.clear;
bdclose all;

 Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

7-79

Simulink Traceability Between Model
Objects

• “Link Model Objects” on page 8-2
• “Link Test Cases to Requirements Documents” on page 8-3
• “Link Simulink Data Dictionary Entries to Requirements” on page 8-7
• “Link Signal Builder Blocks to Requirements and Simulink Model Objects” on page 8-9
• “Requirements Links for Library Blocks and Reference Blocks” on page 8-13
• “Navigate to Requirements from Model” on page 8-16
• “Link to Requirements Modeled in Simulink” on page 8-18

8

Link Model Objects

Link Objects in the Same Model
You can create a requirements link from one model object to another model object:

1 Right-click the link destination model object and select Requirements > Select for Linking
with Simulink.

2 Right-click the link source model object and select Requirements > Add Link to Selected
Object.

3 Right-click the link source model object again and select Requirements. The new link appears
at the top of the Requirements submenu.

Link Objects in Different Models
You can create links between objects in related models. This example shows how to link model objects
in slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow.

1 Open the slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow models.
2 In the slvnvdemo_powerwindow model window, double-click the

power_window_control_system subsystem. The power_window_control_system
subsystem opens.

3 In the slvnvdemo_powerwindow/power_window_control_system subsystem window, right-
click the control subsystem. Select Requirements > Select for Linking with Simulink.

4 In the slvnvdemo_powerwindow_controller model window, right-click the control
subsystem. Select Requirements > Add Link to Selected Object.

5 Right-click the slvnvdemo_powerwindow_controller/control subsystem and select
Requirements. The new RMI link appears at the top of the Requirements submenu.

6 To verify that the links were created, in the Apps tab, click Requirements Manager. In the
Requirements tab, click Highlight Links.

The blocks with requirements links are highlighted.
7 Close the slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow models.

8 Simulink Traceability Between Model Objects

8-2

Link Test Cases to Requirements Documents
Since requirements specify behavior in response to particular conditions, you can build test cases
(test inputs, expected outputs, and assessments) from the model requirements. Test cases reproduce
specific conditions using test inputs, and assess the actual model output against the expected
outputs. As you develop the model, build test files that check system behavior and link them to
corresponding requirements. By defining these test cases in test files, you can periodically check your
model and archive results to demonstrate model stability.

Establish Requirements Traceability for Testing
If you have a Simulink Test and a Simulink Requirements license, you can link requirements to test
harnesses, test sequences, and test cases. Before adding links, review “Supported Requirements
Document Types” on page 5-8.

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately synchronize
between the test harness and the main model. Other changes to the component under test, such as
adding a block, synchronize when you close the test harness. If you add a block to the component
under test, close and reopen the harness to update the main model before adding a requirement link.

To view items with requirements links, on the Apps tab, under Model Verification, Validation, and

Test, click Requirements Manager. In the Requirements tab, click Highlight Links .

Requirements Traceability for Test Sequences

In test sequences, you can link to test steps. To create a link, first find the model item, test case, or
location in the document you want to link to. Right-click the test step, select Requirements, and add
a link or open the link editor.

To highlight or remove the highlighting from test steps that have requirements links, toggle the

requirements links highlighting button in the Test Sequence Editor toolstrip. Highlighting test
steps also highlights the model block diagram.

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to distinguish
which blocks and test steps apply to it. To link test steps or test harness blocks to test cases,

1 Open the test case in the Test Manager.
2 In the left pane, in the Test Browser tab, select the test case.
3 In Simulink in the Apps tab, click Requirements Manager.
4 To link a test case to a:

• Simulink block, right-click the block and select Requirements > Link to Current Test Case
from the context menu.

• Test step, double-click the test sequence block in the test harness to open the Test Sequence
Editor. Right-click the test step and select Requirements > Link to Current Test Case from
the context menu.

 Link Test Cases to Requirements Documents

8-3

Requirements Traceability Example

This example demonstrates adding requirements links to a test harness and test sequence. The model
is a component of an autopilot roll control system. This example requires Simulink Test and Simulink
Requirements.

1 Open the test file, the model, and the harness.

open AutopilotTestFile.mldatx
open_system RollAutopilotMdlRef
sltest.harness.open('RollAutopilotMdlRef/Roll Reference',...
'RollReference_Requirement1_3')

2 In the test harness, on the Apps tab, under Model Verification, Validation, and Test, click

Requirements Manager. In the Requirements tab, click Highlight Links .

The test harness highlights the Test Sequence block, component under test, and Test Assessment
block.

3 Add traceability to the Discrete Derivative block.

a Right-click the Discrete Derivative block and select Requirements > Open Outgoing
Links dialog.

b In the Requirements tab, click New.
c Enter the following to establish the link:

• Description: DD link
• Document type: Text file
• Document: RollAutopilotRequirements.txt
• Location: 1.3 Roll Hold Reference

8 Simulink Traceability Between Model Objects

8-4

d Click OK. The Discrete Derivative block highlights.
4 To trace to the requirements document, right-click the Discrete Derivative block, and select

Requirements > DD Link. The requirements document opens in the editor and highlights the
linked text.

5 In the test harness, open the Test Sequence block. Add a requirements link that links the
InitializeTest step to the test case.

a In the Test Manager, in the left pane, in the Test Browser tab, select Requirement 1.3
Test.

 Link Test Cases to Requirements Documents

8-5

b In the test harness, double-click the test sequence block to open the Test Sequence Editor.
Right-click the InitializeTest step and select Requirements > Link to Current Test
Case from the context menu.

When the requirements link is added, the Test Sequence Editor highlights the step.

See Also
“Requirements-Based Testing for Model Development” (Simulink Test) | “Link to Test Cases from
Requirements”

8 Simulink Traceability Between Model Objects

8-6

Link Simulink Data Dictionary Entries to Requirements
You can create requirements traceability links for entries in Simulink data dictionaries. The process is
similar to linking for other model objects. In the Model Explorer, right-click a data dictionary entry,
select Requirements, and choose one of the selection-based linking options. You can also use the
Link Editor.

This example demonstrates linking to a data dictionary entry.

1 Open the example_sldemo_fuelsys_dd_controller model. At the MATLAB command line,
enter:

openExample('simulink/IdentifyPerformanceSlowdownsUsingTheSimulinkProfilerExample')
open_system('example_sldemo_fuelsys_dd_controller')
close_system('profiling_example_fuelcontrol_model')

2 In the example_sldemo_fuelsys_dd_controller model, open the linked data dictionary.
Click the model data badge in the bottom left corner of the model, then click the External Data
link.

3 In the Model Hierarchy pane of the Model Explorer, under the External Data node, expand the
sldemo_fuelsys_dd_controller data dictionary node.

4 Select Design Data.
5 Locate the PumpCon parameter.

6 In the example_sldemo_fuelsys_dd_controller model, open the airflow_calc
subsystem and select the Pumping Constant lookup table.

7 In the Model Explorer, right-click the PumpCon parameter and select Requirements > Link to
Selection in Simulink to create a link between the two items.

 Link Simulink Data Dictionary Entries to Requirements

8-7

8 Check the link by right-clicking the PumpCon parameter and selecting Requirements, then
select the navigation shortcut at the top of the Requirements submenu. Simulink highlights the
lookup table.

8 Simulink Traceability Between Model Objects

8-8

Link Signal Builder Blocks to Requirements and Simulink Model
Objects

This example shows how to create links from a signal group in a Signal Builder block to a
requirements document and to a model object.

Note When you create links as described in this example, requirements link to individual signal
groups, not with the entire Signal Builder block.

In this example, switch to a different active group in the drop-down list to link a requirement to
another signal group.

Link Signal Builder Blocks to Requirements Documents
This example shows how to create links from a signal group in a Signal Builder block to a
requirements document.

Open the sf_car model.

open_system("sf_car")

Set the Document File Reference Settings

1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements Browser, in the View drop-down menu, select Links.
4 In the Requirements tab, select Link Settings > Default Link Storage.
5 Next to Document file reference, select the option from the list that suits your needs for your

external requirements document. For more information, see “Document Path Storage” on page
11-35.

Create Links from the Signal Builder Block

In the sf_car model window, double-click the User Inputs block.The Signal Builder dialog box
opens, displaying four groups of signals. The Passing Maneuver signal group is the current active
group. The requirements link to the current active signal group.

 Link Signal Builder Blocks to Requirements and Simulink Model Objects

8-9

At the far-right end of the toolbar, click the Show verification settings button . Ensure that the
Requirements display button is selected. The Requirements pane opens on the right-hand side
of the Signal Builder dialog box.

Create the link to this signal group by using the Outgoing Links dialog.

1 In the Signal Builder window, in the Requirements pane, right-click and select Open Outgoing
Links dialog.The Outgoing Links dialog opens.

2 Click New. In the Description field, enter User input requirements.
3 Click Browse and select your external requirements document, then click Open.
4 In the Location drop-down list, select Search text to link to specified text in the document.
5 Next to the Location drop-down list, enter User Input Requirements to create a link to that

specified text in the requirements document.
6 Click Apply to create the link.
7 To verify that the link was created, in the sf_car model, select the User Inputs block, right-click,

and select Requirements.The link to the new requirement is the option at the top of the
submenu.

Clear the open requirement sets and link sets and close the model.

slreq.clear;
bdclose all;

Link Signal Builder Blocks to Model Objects
This example shows how to create links from a signal group in a Signal Builder block to a model
object:

1 Open the sf_car model.

openExample("slrequirements/LinkSignalBuilderBlocksExample")
open_system("sf_car")

2 Open the sf_car/shift_logic chart.
3 Right-click upshifting and select Requirements > Select for Linking with Simulink.
4 In the sf_car model window, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals. The Passing Maneuver
signal group is the current active group. The RMI associates any requirements links that you add
to the current active signal group.

5 In the Signal Builder window, in the Active Group list, select Gradual Acceleration.
6 At the far-right end of the toolbar, click the Show verification settings button . Ensure that

the Requirements display button is selected.

8 Simulink Traceability Between Model Objects

8-10

A Requirements pane opens on the right-hand side of the Signal Builder dialog box.

7 Place your cursor in the window, right-click, and select Open Outgoing Links dialog. The
Outgoing Links dialog opens.

8 Click New. In the Description field, enter Upshifting.
9 In the Document type field, select Simulink. Click Use current. The software fills in the field

with the Location: (Type/Identifier) information for upshifting.

10 Click Apply to create the link.
11 In the model window, select the User Inputs block, right-click, and select Requirements.

The link to the new requirement is the option at the top of the submenu.
12 To verify that the links were created, in the sf_car model window, in the Apps tab, click

Requirements Manager. In the Requirements tab, click Highlight Links to highlight the
model objects with requirements.

 Link Signal Builder Blocks to Requirements and Simulink Model Objects

8-11

Note Links that you create in this way associate requirements information with individual signal
groups, not with the entire Signal Builder block.

13 Close the sf_car model.

See Also

More About
• “Requirement Links” on page 2-32
• “Link Model Objects” on page 8-2
• “Link Test Cases to Requirements Documents” on page 8-3
• “Link Simulink Data Dictionary Entries to Requirements” on page 8-7

8 Simulink Traceability Between Model Objects

8-12

Requirements Links for Library Blocks and Reference Blocks

Introduction to Library Blocks and Reference Blocks
Simulink allows you to create your own block libraries. If you create a block library, you can reuse the
functionality of a block, subsystem, or Stateflow atomic subchart in multiple models.

When you copy a library block to a Simulink model, the new block is called a reference block. You can
create several instances of this library block in one or more models.

The reference block is linked to the library block using a library link. If you change a library block,
any reference block that is linked to the library block is updated with those changes when you open
or update the model that contains the reference block.

Note For more information about reference blocks and library links, see “Custom Libraries”.

Library Blocks and Requirements
Library blocks themselves can have links to requirements. In addition, if a library block is a
subsystem or atomic subchart, the objects inside the library blocks can have library links. You use the
Requirements Management Interface (RMI) to create and manage requirements links in libraries and
in models.

The following sections describe how to manage requirements links on and inside library blocks and
reference blocks.

Copy Library Blocks with Requirements
When you copy a library subsystem or masked block to a model, you can highlight, view and navigate
requirements links on the library block and on objects inside the library block. However, those links
are not associated with that model. The links are stored with the library, not with the model.

You cannot add, modify, or delete requirements links on the library block from the context of the
reference block. If you disable the link from the reference block to the library block, you can modify
requirements on objects that are inside library blocks just as you can for other block attributes when
a library link has been disabled.

Manage Requirements on Reference Blocks
You use the RMI to manage requirements links on a reference block just like any other model object.
You can view and navigate both local and library requirements on a reference block.

• Locally created requirements links — Can be modified or deleted without changing the library
block:

• Manifold absolute pressure sensor
• Mass airflow estimation

• Requirements links on the library block — Cannot be modified or deleted from the context of the
reference block:

 Requirements Links for Library Blocks and Reference Blocks

8-13

• Speed sensor
• Throttle sensor
• Oxygen sensor

Manage Requirements Inside Reference Blocks
If your library block is a subsystem or a Stateflow atomic subchart, you can create requirements links
on objects inside the subsystem or subchart. If you disable the link from the reference block to the
library, you can add, modify, or delete requirements links on objects inside a reference block. Once
you have disabled the link, the RMI treats those links as locally created links.

After you make changes to requirements links on objects inside a reference block, you can resolve the
link so that those changes are pushed to the library block. The next time you create an instance of
that library block, the changes you made are copied to the new instance of the library block.

The workflow for creating a requirement link on an object inside a reference block is:

1 Within a library you have a subsystem S1. Drag S1 to a model, creating a new subsystem. This
subsystem is the reference block.

2 Disable the library link between the reference block and the library block. Keep the library
loaded while you disable the link to maintain RMI data. To disable the link, select the reference
block, and in the Subsystem tab, click Disable Link.

3 Create a link from the object inside the reference block to the requirements document.

Note When linking to a requirement from inside a reference block, you can create links only in
one direction: from the model to the requirements document. The RMI does not support inserting
navigation objects into requirements documents for objects inside reference blocks.

4 Resolve the library link between the reference block and the library block:

a Select the reference block.
b In the Subsystem tab, click Restore Link.
c In the Action column, click Push.
d Click OK to resolve the link to the library block and push the newly added requirement to

the object inside the library block.

When you resolve the library link between the library block and the subsystem, Simulink
pushes the new requirement link to the library block S1. The following graphic shows the
new link from inside the library block S1 to the requirement.

Note If you see a message that the library is locked, you must unlock the library before you can
push the changes to the library block.

5 If you reuse library block S1, which now has an object with a requirement link, in another model,
the new subsystem contains an object that links to that requirement.

8 Simulink Traceability Between Model Objects

8-14

Links from Requirements to Library Blocks
If you have a requirement that links to a library block and you drag that library block to a model, the
requirement does not link to the reference block; the requirement links only to the library block.

For example, consider the situation where you have established linking between a library block (B1 in
the following graphic) and a requirement in both directions.

When you use library block B1 in a model, you can navigate from the reference block to the
requirement. However, the link from the requirement still points only to library block B1, not to the
reference block.

As discussed in the previous section, you can create requirements links on objects inside instances of
library block after disabling library links. However, the RMI prohibits you from creating a link from
the requirements document to such an object because that link would become invalid when you
restored the library link.

 Requirements Links for Library Blocks and Reference Blocks

8-15

Navigate to Requirements from Model

Navigate from Model Object
You can navigate directly from a model object to that object's associated requirement. When you take
these steps, the external requirements document opens in the application, with the requirements text
highlighted.

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 To open the linked requirement, right-click the Airflow calculation subsystem and select

Requirements > 1. “Mass airflow estimation”.

The Microsoft Word document slvnvdemo_FuelSys_DesignDescription.docx, opens with
the section 2.1 Mass airflow estimation selected.

Note If you are running a 64-bit version of MATLAB, when you navigate to a requirement in a PDF
file, the file opens at the top of the page, not at the bookmark location.

Navigate from System Requirements Block
Sometimes you want to see all the requirements links at a given level of the model hierarchy. In such
cases, you can insert a System Requirements block to collect all requirements links in a model or
subsystem. The System Requirements block lists requirements links for the model or subsystem in
which it resides; it does not list requirements links for model objects inside that model or subsystem,
because those are at a different level of the model hierarchy.

In the following example, you insert a System Requirements block at the top level of the
slvnvdemo_fuelsys_officereq model, and navigate to the requirements using the links inside
the block.

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Enable Model Highlighting in the Coverage app.
3 Open the fuel rate controller subsystem.

The Airflow calculation subsystem has a requirements link.
4 Open the Airflow calculation subsystem.
5 In the Simulink toolstrip, click Library Browser.
6 In the Libraries tree view, select Simulink Requirements.

This library contains only one block—the System Requirements block.
7 Drag a System Requirements block into the Airflow calculation subsystem.

The RMI software collects and displays any requirements links for that subsystem in the System
Requirements block.

8 Simulink Traceability Between Model Objects

8-16

matlab:slvnvdemo_fuelsys_officereq
matlab:slvnvdemo_fuelsys_officereq

8 In the System Requirements block, double-click 1. “Mass airflow subsystem”.

The Microsoft Word document, slvnvdemo_FuelSys_DesignDescription.docx, opens, with
the section 2.1 Mass airflow estimation selected.

 Navigate to Requirements from Model

8-17

Link to Requirements Modeled in Simulink
This example shows how to link between verification subsystems and models. You can use verification
subsystems to model functional requirements and verify them in simulation. Traceability between the
verification and implementation models allow you to summarize analysis and test results in the
Requirements Editor.

The Verification and Design Models

At the command line, enter

open_system('slvnvdemo_powerwindow_vs')

8 Simulink Traceability Between Model Objects

8-18

The verification model specifies properties and requirements for
slvnvdemo_powerwindowController. The verification subsystems include logic that verifies
system behavior when an obstacle is detected:

• Obstacle Response: When an obstacle is detected, the controller shall give the down command
for 1 second.

The requirement is modeled in Verification Subsystem2.

open_system('slvnvdemo_powerwindow_vs/Verification Subsystem2')

 Link to Requirements Modeled in Simulink

8-19

• In the design model, the obstacle response is implemented in the emergencyDown state:

Link from Verification to Design Model

Link from Verification Subsystem2 to the emergencyDown state:

1 Double-click on the Model block to open slvnvdemo_powerwindow.
2 In the control chart, right-click the emergencyDown state and select Requirements > Select

for Linking with Simulink.
3 In the slvnvdemo_powerwindow_vs model, right click Verification Subsystem2 and select

Requirements > Add Link to Selected Object.
4 In the slvnvdemo_powerwindow_vs model, open the Requirements Manager app. A badge

appears on Verification Subsystem2, indicating a link, and the link appears in the Property
Inspector.

5 Change the link type to Verifies. Next to the link in the Property Inspector, click the Show in
Links View icon. Select the link in the table, then change the link property Type from
Implements to Verifies.

8 Simulink Traceability Between Model Objects

8-20

Cleanup

These commands unload requirements sets and close open models.

slreq.clear; % Closes open requirements sets without saving changes
close_system('slvnvdemo_powerwindow_vs',0)

 Link to Requirements Modeled in Simulink

8-21

MATLAB Code Traceability

• “Requirements Traceability for MATLAB Code Lines” on page 9-2
• “Associate Traceability Information with MATLAB Code Lines in Simulink” on page 9-6

9

Requirements Traceability for MATLAB Code Lines

Link MATLAB Code Lines to Requirements in a Requirement Set
Create Links by Using Context Menu Shortcuts

To create requirements traceability links from MATLAB code lines to requirements in the
Requirements Editor, use the Requirements context menu in the MATLAB Editor.

1 Load the requirement set that contains the requirement that you want to link to.
2 Navigate to the Requirements Editor and select the requirement.
3 In the MATLAB Editor, select the line or lines of code that you want to link.
4 Right-click your selection.
5 From the context menu, select Requirements > Link to Selection in Requirements Browser.

Simulink Requirements creates a traceability link from the MATLAB code lines to the selected
requirement in the Requirements Editor. Navigate from your requirements to the MATLAB code lines
by clicking Show Requirements and using the navigation links available from the Details pane,
under Links in the Requirements Editor.

Create Links Through the Outgoing Links Dialog Box

Create requirements traceability links between MATLAB code lines and requirements in requirement
sets by using the Outgoing Links dialog box.

1 Load the requirement set that contains the requirement that you want to link to.
2 Navigate to the Requirements Editor and select the requirement.
3 In the MATLAB Editor, select the line or lines of code that you want to link to the requirement.
4 Right-click your selection.
5 From the context menu, select Requirements > Open Outgoing Links dialog.
6 In the Outgoing Links dialog box, click New.
7 From the Document type drop-down list, select Requirement Set.
8 Populate the Document field and the requirement Description by clicking Use current.
9 Click OK.

Navigate from your requirements to MATLAB code lines by clicking Show Requirements and using
the navigation links available from the Details pane, under Links in the Requirements Editor.

Note When you link code lines from a MATLAB-based Simulink test to a requirement, the code lines
that you select determine the type of link and the test to which it is added. See“Test Models Using
MATLAB-Based Simulink Tests” (Simulink Test) .

Link MATLAB Code Lines to Requirements Information in External
Documents
Create Link by Using Context Menu Shortcuts

To create requirements traceability links from MATLAB code lines to selections in Microsoft Word,
Microsoft Excel, or IBM Rational DOORS documents, use shortcuts in the Requirements Traceability
context menu.

9 MATLAB Code Traceability

9-2

1 In your requirements document, select the target requirement for the traceability link that you
want to create.

2 In the MATLAB Editor, select the line or lines of code that you want to link to the requirement.
3 In the MATLAB Editor, right-click your selection.
4 From the context menu, select Requirements. Depending on the type of your requirements

document, select one of these options:

• Link to Selection in Word
• Link to Selection in Excel
• Link to Selection in DOORS

The software creates a traceability link from the selected MATLAB code range to the selection in
the requirements document. If you have bidirectional linking enabled, the software also inserts a
navigation object for the selection in the requirements document. The navigation object links to
the selected MATLAB code range.

Create and Edit Links Through the Outgoing Links Dialog Box

You can create, edit, and delete traceability links through the Outgoing Links dialog box. To open the
Outgoing Links dialog box:

• In the MATLAB Editor, select the line or lines of code that you want to link to requirements.
• Right-click your selection.
• From the context menu, select Requirements > Open Outgoing Links dialog.

See “Outgoing Links Editor” on page 10-6.

Enable or Disable Traceability Links Highlighting for MATLAB Code
Review traceability in your MATLAB code by highlighting code lines that have requirements links.

Enable Traceability Highlighting of MATLAB Code

To highlight traceability links in your MATLAB code, do one of the following:

• In the View tab, in the Display section, select Highlight Traceability.
• In the MATLAB Editor, right-click in a line of code with a traceability link. From the context menu,

select Requirements > Enable Traceability Highlighting.

Disable Traceability Highlighting of MATLAB Code

To turn off highlighting of traceability links in your MATLAB code, do one of the following:

• In the View tab, in the Display section, clear Highlight Traceability.
• In the MATLAB Editor, right-click in a line of code with a traceability link. From the context menu,

select Requirements > Disable Traceability Highlighting.

 Requirements Traceability for MATLAB Code Lines

9-3

Remove Traceability Links from MATLAB Code Lines
Delete Links to Requirements from MATLAB Code Lines

To remove requirements traceability links from a line or lines of MATLAB code:

1 In the MATLAB Editor, right-click within a range of code that has requirements traceability links.
2 From the context menu, select Requirements > Delete All Links.

All links to requirements from this MATLAB code range are deleted. Links to this MATLAB code
range from external requirements documents are not deleted.

Delete Link Targets in MATLAB Code Lines

If you have links to MATLAB code ranges from external requirements documents, you can delete the
targets for these links from your MATLAB code.

To remove requirements traceability targets from a line or lines of MATLAB code:

1 Delete outgoing links as described in “Delete Links to Requirements from MATLAB Code Lines”
on page 9-4.

2 In the MATLAB Editor, right-click within a previously linked range of code.
3 From the context menu, select Requirements > Discard Named Range.

When you discard a named range, links to that MATLAB code range from external documents no
longer work. Discarding named ranges does not delete navigation objects in external
requirements documents.

Traceability for MATLAB Code Lines
Traceability Link Targets

You can create MATLAB code traceability links for:

• Lines of MATLAB code in a standalone file.
• Lines of MATLAB code inside a MATLAB Function block.

You can create links from a line or lines of MATLAB code to:

• Selections in Simulink Requirements.
• Objects in Simulink models.
• Targets in Microsoft Word or Microsoft Excel documents.
• Targets in IBM Rational DOORS databases.
• Targets in text, HTML, or PDF documents.
• HTTP URLs.

Bidirectional linking is supported for targets in MATLAB, Simulink, Microsoft Word, Microsoft Excel,
and IBM Rational DOORS. Bidirectional linking creates links to and from the selected link
destination. To enable bidirectional linking, in the Requirements Settings dialog box, under the
Selection Linking tab, select Modify destination for bidirectional linking. For more information,
see “Selection Linking Tab” on page 5-10.

9 MATLAB Code Traceability

9-4

You can also create links to MATLAB code lines from any external application that supports HTTP
navigation.

Traceability Links in Code Generation Reports

Embedded Coder® embeds requirements traceability links for MATLAB files that are saved externally
from the Simulink model and referenced from MATLAB Function blocks in Simulink. In the code
generation report, click the hyperlink to navigate to the corresponding requirement in the
Requirements Editor. See “Generate Code for Models with Requirements Links” on page 11-8.

Storage of Traceability Links

In a standalone MATLAB file, you can create, navigate, and delete traceability links for lines of code
without changing the MATLAB file. The Requirements Management Interface (RMI) stores
requirements traceability data for a MATLAB file in a .req file with the same name and location as
the MATLAB file.

If you want to create traceability links for lines of code in a MATLAB Function block, set the parent
model to store requirements data externally. For a new model, see “Requirements Link Storage” on
page 5-4. For an existing model, see “Move Internally Stored Requirements Links to External
Storage” on page 5-5. When you create traceability links for code inside a MATLAB Function block,
the RMI stores them in a .req file for the parent model. The .req file for the model contains
requirements traceability data for linked model objects and for linked code in MATLAB Function
blocks in the model.

Limitations of MATLAB Code Traceability

The software does not support traceability links for overlapping regions of MATLAB code. If one
linked range of code completely overlaps another smaller region of code, the link for the larger range
takes precedence over the link for the smaller range. To avoid complications from overlapping linked
ranges, when you create traceability links for MATLAB code lines, choose ranges of code that do not
overlap.

You can cut or copy a selection of code that has traceability links. When you paste that selection, the
software attempts to recreate the corresponding traceability links. Depending on location and code
formatting, you might need to recreate the traceability links manually.

If you select code that has traceability links and drag that code to a new location, you might need to
recreate traceability links for the code in the new location.

Requirements linked to individual MATLAB code lines inside a MATLAB Function block appear in
HTML requirements traceability reports but do not appear the Simulink Report Generator™ Web
View. See “Create and Use a Web View of a Model” (Simulink Report Generator).

Requirements traceability is not supported for MATLAB Live Editor.

See Also

More About
• “Generate Code for Models with Requirements Links” on page 11-8

 Requirements Traceability for MATLAB Code Lines

9-5

Associate Traceability Information with MATLAB Code Lines in
Simulink

Traceability management support in the MATLAB Editor is an extension of the Simulink-based
Requirements Management Interface to allow associations between MATLAB code lines and external
artifacts. This capability does not require editing MATLAB files; all traceability data is stored
separately. This is similar to "external" storage of RMI links when working with Simulink models, as
in “Managing Requirements Without Modifying Simulink Model Files” on page 11-44.

In addition, using the "external storage" mode for managing traceability information, Simulink and
Stateflow users can benefit from finer granularity when associating external documents with contents
of MATLAB Function blocks.

The included example model has traceability data associated both with Simulink blocks and individual
code lines of MATLAB Function blocks.

Open Example Model

This example demonstrates linking between external documents and MATLAB code lines when
modeling stimulated spiking in connected neural cells.

Evaluate the following code to open the slvnvdemo_synaptic_transmission Simulink model in
the working directory and set a preference to allow proper communication for files in this example.

open('slvnvdemo_synaptic_transmission.slx');
rmipref('UnsecureHttpRequests',true);

There are three Model blocks referencing the same model of a spiking neural cell which can be seen
in slvnvdemo_neuron.slx. Evaluate the code to open the model.

open('slvnvdemo_neuron.slx');

The neural cell model follows a "Leaky Integrators" equation:

CmdV
dt = Itotal−

V − V0
Rm

Cm, Rm− capacitance and resistance of cell membrane

Itotal− includes injected stimulation current and all ion channel currents

V0− resting cross‐membrane potential, typically ‐70mV

For the purpose of simulation, this is converted to:

V V0 + ∫
0

t
1

Cm
(Itotal−

V − V0
Rm

)dt

Two MATLAB Functions between neurons calculate post-synaptic currents. When pre-synaptic
depolarization crosses the neurotransmitter release threshold, we increment post-synaptic current by
one pulse of given amplitude:

I I + Iamplitude

9 MATLAB Code Traceability

9-6

The resulting total current decays exponentially according to:

dI
dt = − I * t

τ

The next increment is disallowed for a certain time frame after the previous pulse to model the effect
of short-term synaptic depression. The model neglects the time delay of axonal transmission.

Simulate Model and View Results

Evaluate the following code to simulate slvnvdemo_synaptic_transmission model.

sim('slvnvdemo_synaptic_transmission');

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: slvnvdemo_neuron

Build Summary

Simulation targets built:

Model Action Rebuild Reason
==
slvnvdemo_neuron Code generated and compiled slvnvdemo_neuron_msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 0.921s

Manually check the Scope block for results or evaluate the following code.

open_system('slvnvdemo_synaptic_transmission/Scope');

The six plots are:

1 externally injected electrical current pulse
2 injection-stimulated intracellular voltage spiking of the first neuron
3 post-synaptic current generated in the second neuron
4 synaptically stimulated activity of the second neuron
5 post-synaptic current generated in the third neuron
6 synaptically stimulated activity of the third neuron

Observe regular spiking of the upstream neuron (plot 2) while stimulation pulse is applied (plot 1).
Synaptically induced current in downstream neuron (plot 3) skips some action potentials of the
upstream neuron due to short-term neurotransmitter depletion modeled as a temporary turn-off
period in the Synaptic current function block. Evaluate the code to navigate to the Synaptic
current block.

rmidemo_callback('locate','slvnvdemo_synaptic_transmission/Synaptic current');

The downstream neuron is seen to, sometimes, integrate more than one synaptic input to produce a
spike (plot 4). The third neuron integrates synaptic inputs from the second neuron (plot 5) and spikes
at a later time (plot 6). With the default parameter values, the third neuron may spike 1 or more
times, depending on intentionally introduced random noise in the model, by the Noise current
block in the slvnvdemo_neuron model. Navigate to the Noise current block.

rmidemo_callback('locate','slvnvdemo_neuron/Noise current');

 Associate Traceability Information with MATLAB Code Lines in Simulink

9-7

The same parameter values are assigned for all three neurons and both synapses. Traceability linking
is used to justify parameter values and implementation.

Navigate Between Simulink and Standalone MATLAB Files

The slvnvdemo_synaptic_transmission model runs an external script synaptic_params.m to
load required parameter values into workspace. If desired, open the script by evaluating the following
code: open('synaptic_params.m').

MATLAB code linking allows you to trace from a dependent block in Simulink, not only to a script file
but to the specific line that defines a value used in simulation.

Locate the Stimulation pulse block in the model manually or evaluate the following code.

rmidemo_callback('locate','slvnvdemo_synaptic_transmission/Stimulation pulse');

Right-click the block and select Requirements > 1. "I_inj = 2e-11; % 20 pA" to follow the link and
view the relevant highlighted region in the MATLAB code file, or evaluate the following:

open('synaptic_params.m'); % If desired, open the synaptic parameters script

rmidemo_callback('view','slvnvdemo_synaptic_transmission/Stimulation
pulse',1); % Follow the Requirements link

Notice that in the synaptic_params.m script, there is a mismatched parameter value. This is easily
detected via Traceability link. Highlight line 12 in the synaptic_params.m script which reads
V_syn_release = -2e-2; % -20 mV. Right click the selection and in the context menu, click
Requirements > 1. slvnvdemo_synaptic_transmission/Synaptic release threshold (Constant).
This navigates you back to the Simulink model and highlights the block that is linked to line 12 in
synaptic_params.m.

In Simulink, click the Apps tab and open Requirements Manager. Click Highlight links in the
Requirements tab to highlight the links that you just created, or evaluate the following code.

rmi('highlightModel', 'slvnvdemo_synaptic_transmission');

Create Traceability Link for Lines of MATLAB Code

Evaluate the following code to make sure that bidirectional linking is enabled so that you can create
two-way traceability links in one step.

rmipref('BiDirectionalLinking',true);

The Synaptic time constant block in the bottom left corner of the model is not yet linked to its
related line in synaptic_params.m. In the Simulink model, select the Synaptic time constant
block. If you can't find this block, evaluate the following code and then select it.

rmidemo_callback('locate','slvnvdemo_synaptic_transmission/Synaptic time constant');

Then, in the MATLAB Editor, select the variable name Syn_decay_time at the bottom of the
synaptic_params.m script. Evaluate the following code to open the script, if you haven't already:
open('synaptic_params').

Right-click on the selected line and from the context menu, choose Requirements > Link to
Selection in Simulink. Test the new links by navigating from MATLAB to Simulink and back to
MATLAB.

9 MATLAB Code Traceability

9-8

Create Traceability Link for Lines of Code Inside MATLAB Function Blocks

The slvnvdemo_synaptic_transmission model has a MATLAB Function block that you will use
trace to parameter value sources to the Synaptic strength constant block. In the Simulink model,
click on the Synaptic strength constant block or evaluate the following code to locate the block.

 Associate Traceability Information with MATLAB Code Lines in Simulink

9-9

To select it for linking, right-click the block and click Requirements > Select for Linking with
Simulink.

rmidemo_callback('locate','slvnvdemo_synaptic_transmission/Synaptic strength');

Instead of linking the MATLAB function block itself, open the MATLAB code of this block and link
specific lines. In the slvnvdemo_synaptic_transmission model, navigate to the Synaptic
current block and double click it, or evaluate the following code.

rmidemo_callback('emlshow','slvnvdemo_synaptic_transmission/Synaptic current');

In the MATLAB Function Block Editor, find the occurrence of I_amplitude on line 33 of the MATLAB
Function block code. Highlight the line with the cursor to select it and then right-click it. Select
Requirements from the context menu, then select Link to Selection in Simulink.

Create Traceability Link Between Lines in MATLAB Code and Microsoft Word

Until this point we only looked at linking between MATLAB and Simulink. Open the Ion current
calculation MATLAB Function block that belongs to the Sodium current calculation
subsystem of the referenced slvnvdemo_neuron model, or evaluate the following code:
rmidemo_callback('emlshow','slvnvdemo_neuron/Sodium channel current/Ion
current calculation').

Right-click in the MATLAB Function Block Editor and select Requirements > Enable
Requirements Highlighting from the context menu to see which lines of code have requirements
links.

9 MATLAB Code Traceability

9-10

Right-click on a line of code that's been highlighted to indicate it has a requirements link. From the
Requirements context menu, navigate to a numbered link at the top of the menu. The associated
Word document opens to the associated text. You can also open the Word document and visually
identify the links by looking for an object similar to the MATLAB icon. You can navigate to the linked
code by Ctrl+clicking this linked object.

 Associate Traceability Information with MATLAB Code Lines in Simulink

9-11

Evaluate the following code to open the Word document: open('NeuralSpikeModeling.docx').

To create a similar link to the Ion current calculation Function in Potassium channel
current subsystem, open the Word document and use the Find function (Ctrl+F) to find the
phrase "outward current of potassium ions." Select this phrase with your cursor in the Word
document. Then, open the Ion current calculation MATLAB Function block from above, or
evaluate the following code: rmidemo_callback('emlshow','slvnvdemo_neuron/Potassium
channel current/Ion current calculation').

In the MATLAB Function Block Editor, select the implementation for outwardCurrent subfunction
(lines 34-37). Right-click the selected lines and in the context menu, select Requirements > Link to
Selection in Word. Minimize the Word document, then navigate from the newly highlighted lines at
the bottom of the MATLAB code to the related description in Word. When the correct location is
highlighted, use the MATLAB icon to navigate back to code.

Report Traceability Links

Traceability links associated with MATLAB code lines of MATLAB Function blocks are included in the
Requirements Traceability Report generated for the parent Simulink model. In the Requirements
tab, click Share > Generate Model Traceability Report in the slvnvdemo_neuron Simulink
model. Evaluate the following code to open the model.

open('slvnvdemo_neuron.slx');

9 MATLAB Code Traceability

9-12

Note that the MATLAB Function block links information is present in the report, including quotations
of linked MATLAB Code lines.

Cleanup

The following commands clean up the workspace by clearing all Simulink Requirements objects and
closing all Simulink models.

slreq.clear;
bdclose('all');

 Associate Traceability Information with MATLAB Code Lines in Simulink

9-13

URL and Custom Traceability

• “Requirement Links and Link Types” on page 10-2
• “Custom Link Types” on page 10-8
• “Implement RMI Extension for Support of Custom Document Type” on page 10-17

10

Requirement Links and Link Types

Requirements Traceability Links
When you want to navigate from a Simulink model or from a region of MATLAB code to a location
inside a requirements document, you can add requirements traceability links to the model or code.

Requirements traceability links have the following attributes:

• A description of up to 255 characters.
• A requirements document path name, such as a Microsoft Word file or a module in an IBM

Rational DOORS database. (The RMI supports several built-in document formats. You can also
register custom types of requirements documents. See “Supported Requirements Document
Types” on page 5-8.)

• A designated location inside the requirements document, such as:

• Bookmark
• Anchor
• ID
• Page number
• Line number
• Cell range
• Link target
• Tags that you define

Supported Model Objects for Requirements Linking
You can associate requirements links between the following types of Simulink model objects:

• Simulink block diagrams and subsystems
• Simulink blocks and annotations
• Simulink data dictionary entries
• Signal Builder signal groups
• Stateflow charts, subcharts, states, transitions, and boxes
• Stateflow functions
• Lines of MATLAB code
• Simulink Test Manager test cases

Links and Link Types
Requirements links are the data structures, managed by Simulink, that identify a specific location
within a document. You get and set the links on a block using the rmi command.

Links and link types work together to perform navigation and manage requirements. The doc and id
fields of a link uniquely identify the linked item in the external document. The RMI passes both of
these values to the navigation command when you navigate a link from the model.

10 URL and Custom Traceability

10-2

Link Type Properties
Link type properties define how links are created, identified, navigated to, and stored within the
requirement management tool. The following table describes each of these properties.

Property Description
Registration The name of the function that creates the link type. The RMI stores this

name in the Simulink model.
Label A string to identify this link type. In the “Outgoing Links Editor” on

page 10-6, this string appears on the Document type drop-down list
for a Simulink or Stateflow object.

IsFile A Boolean property that indicates if the linked documents are files
within the computer file system. If a document is a file:

• The software uses the standard method for resolving the path.
• In the Outgoing Links Editor, when you click Browse, the file

selection dialog box opens.
Extensions An array of file extensions. Use these file extensions as filter options in

the Outgoing Links Editor when you click Browse. The file extensions
infer the link type based on the document name. If you registered more
than one link type for the same file extension, the link type that you
registered takes first priority.

LocDelimiters A string containing the list of supported navigation delimiters. The first
character in the ID of a requirement specifies the type of identifier. For
example, an identifier can refer to a specific page number (#4), a named
bookmark (@my_tag), or some searchable text (?search_text). The
valid location delimiters determine the possible entries in the Outgoing
Links Editor Location drop-down list.

NavigateFcn The MATLAB callback invoked when you click a link. The function has
two input arguments: the document field and the ID field of the link:
feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback invoked when you click the Document Index tab
in the Outgoing Links Editor. This function has a single input argument
that contains the full path of the resolved function or, if the link type is
not a file, the Document field contents.

The function returns three outputs:

• Labels
• Depths
• Locations

BrowseFcn The MATLAB callback invoked when you click Browse in the Outgoing
Links Editor. You do not need this function when the link type is a file.
The function takes no input arguments and returns a single output
argument that identifies the selected document.

 Requirement Links and Link Types

10-3

Property Description
CreateURLFcn The MATLAB callback that constructs a path name to the requirement.

This function uses the document path or URL to create a specific
requirement URL. The requirement URL is based on a location identifier
specified in the third input argument. The input arguments are:

• Full path name to the requirements document
• Info about creating a URL to the document (if applicable)
• Location of the requirement in the document

This function returns a single output argument specified as a character
vector. Use this argument when navigating to the requirement from the
generated report.

IsValidDocFcn The MATLAB callback invoked when you run a requirements
consistency check. The function takes one input argument—the fully
qualified name for the requirements document. It returns true if the
document can be located; it returns false if the document cannot be
found or the document name is invalid.

IsValidIdFcn The MATLAB callback invoked when you run a requirements
consistency check. This function takes two input arguments:

• Fully qualified name for the requirements document
• Location of the requirement in the document

IsValidIdFcn returns true if it finds the requirement and false if it
cannot find that requirement in the specified document.

IsValidDescFcn The MATLAB callback invoked when you run a requirements
consistency check. This function has three input arguments:

• Full path to the requirements document
• Location of the requirement in the document
• Requirement description label as stored in Simulink

IsValidDescFcn returns two outputs:

• True if the description matches the requirement, false otherwise.
• The requirement label in the document, if not matched in Simulink.

10 URL and Custom Traceability

10-4

Property Description
DetailsFcn The MATLAB callback invoked when you generate the requirements

report with the Include details from linked documents option. This
function returns detailed content associated with the requirement and
has three input arguments:

• Full path to the requirements document
• Location of the requirement in the document
• Level of details to include in report (Unused)

The DetailsFcn returns two outputs:

• Numeric array that describes the hierarchical relationship among
the fragments in the cell array

• Cell array of formatted fragments (paragraphs, tables, et al.) from
the requirement

SelectionLinkFcn The MATLAB callback invoked when you use the selection-based linking
menu option for this document type. This function has two input
arguments:

• Handle to the model object that will have the requirement link
• True if a navigation object is inserted into the requirements

document, or false if no navigation object is inserted

SelectionLinkFcn returns the requirements link structure for the
selected requirement.

GetResultFcn The MATLAB callback invoked when you link external test cases with
the requirements to the custom link type file. It is used in the custom
link type file and fetches external results to integrate with verification
statuses.

This function has one input argument:

• link: This is a slreq.Link object. The function identifies the
source and destination of the link.

The function returns a single output argument, result which is
specified as a struct with the following fields:

• status (Required): This is a value from
slreq.verification.Status (Pass, Fail, Stale, or Unknown)

• timestamp (Optional): Skip this field or mark NaT to avoid stale
result detection.

• info (Optional): This should be a character,vector or string. The
value of info is printed as a diagnostic on the tooltip of the status.

• error (Optional): This should be a character,vector or string. The
value of error is printed as a diagnostic on the tooltip of the status.
If provided, it takes precedence over the info field.

 Requirement Links and Link Types

10-5

Outgoing Links Editor
Manage Requirements Traceability Links Using the Outgoing Links Editor

You can create, edit, and delete requirements traceability links using the Outgoing Links Editor. To
open the Outgoing Links Editor:

• in the Simulink Editor, right-click on a model object that has a requirements traceability link.
From the context menu, select Requirements > Open Outgoing Links dialog.

• in the MATLAB Editor, right-click inside a region of code that has a requirements traceability link.
From the context menu, select Requirements > Open Outgoing Links dialog.

The Outgoing Links Editor opens, as shown below.

In the Outgoing Links Editor, you can:

• Create requirements links from one or more Simulink model objects or MATLAB code lines.
• Customize information about requirements links, including specifying user tags to filter

requirements highlighting and reporting.
• Delete existing requirements links.
• Modify the stored order of requirements to control the order of labels in context menus for linked

objects.

10 URL and Custom Traceability

10-6

Requirements Tab

On the Requirements tab, you specify detailed information about the link, including:

• Description of the requirement (up to 255 words). If you create a link using the document index,
unless a description already exists, the name of the index location becomes the description for the
link .

• Path name to the requirements document.
• Document type (Microsoft Word, Microsoft Excel, IBM Rational DOORS, MuPAD®, HTML, text file,

etc.).
• Location of the requirement (search text, named location, or page or item number).
• User-specified tag or keyword.

Document Index Tab

The Document Index tab is available only if you have specified a file in the Document field on the
Requirements tab that supports indexing. On the Document Index tab, the RMI generates a list of
locations in the specified requirements document for the following types of requirements documents:

• Microsoft Word
• IBM Rational DOORS
• HTML files
• MuPAD

Note The RMI cannot create document indexes for PDF files.

From the document index, select the desired requirement from the document index and click OK.
Unless a description already exists, the name of the index location becomes the description for the
link.

If you make any changes to your requirements document, to load any newly created locations into the
document index, you must click Refresh. During a MATLAB session, the RMI does not reload the
document index unless you click the Refresh button.

 Requirement Links and Link Types

10-7

Custom Link Types

Create a Custom Requirements Link Type
In this example, you implement a custom link type to a hypothetical document type, a text file with
the extension .abc. Within this document, the requirement items are identified with a special text
string, Requirement::, followed by a single space and then the requirement item inside quotation
marks (").

You will create a document index listing all the requirement items. When navigating from the
Simulink model to the requirements document, the document opens in the MATLAB Editor at the line
of the requirement that you want.

To create a custom link requirement type:

1 Write a function that implements the custom link type and save it on the MATLAB path.

For this example, the file is rmicustabcinterface.m, containing the function,
rmicustabcinterface, that implements the ABC files shipping with your installation.

2 To view this function, at the MATLAB prompt, type:

edit rmicustabcinterface

The file rmicustabcinterface.m opens in the MATLAB Editor. The content of the file is:
function linkType = rmicustabcinterface
%RMICUSTABCINTERFACE - Example custom requirement link type
%
% This file implements a requirements link type that maps
% to "ABC" files.
% You can use this link type to map a line or item within an ABC
% file to a Simulink or Stateflow object.
%
% You must register a custom requirement link type before using it.
% Once registered, the link type will be reloaded in subsequent
% sessions until you unregister it. The following commands
% perform registration and registration removal.
%
% Register command: >> rmi register rmicustabcinterface
% Unregister command: >> rmi unregister rmicustabcinterface
%
% There is an example document of this link type contained in the
% requirement demo directory to determine the path to the document
% invoke:
%
% >> which demo_req_1.abc

% Copyright 1984-2010 The MathWorks, Inc.

 % Create a default (blank) requirement link type
 linkType = ReqMgr.LinkType;
 linkType.Registration = mfilename;

 % Label describing this link type
 linkType.Label = 'ABC file (for demonstration)';

 % File information
 linkType.IsFile = 1;
 linkType.Extensions = {'.abc'};

 % Location delimiters
 linkType.LocDelimiters = '>@';
 linkType.Version = ''; % not required

 % Uncomment the functions that are implemented below
 linkType.NavigateFcn = @NavigateFcn;
 linkType.ContentsFcn = @ContentsFcn;

10 URL and Custom Traceability

10-8

function NavigateFcn(filename,locationStr)
 if ~isempty(locationStr)
 findId=0;
 switch(locationStr(1))
 case '>'
 lineNum = str2num(locationStr(2:end));
 openFileToLine(filename, lineNum);
 case '@'
 openFileToItem(filename,locationStr(2:end));
 otherwise
 openFileToLine(filename, 1);
 end
 end

function openFileToLine(fileName, lineNum)
 if lineNum > 0
 if matlab.desktop.editor.isEditorAvailable
 matlab.desktop.editor.openAndGoToLine(fileName, lineNum);
 end
 else
 edit(fileName);
 end

function openFileToItem(fileName, itemName)
 reqStr = ['Requirement:: "' itemName '"'];
 lineNum = 0;
 fid = fopen(fileName);
 i = 1;
 while lineNum == 0
 lineStr = fgetl(fid);
 if ~isempty(strfind(lineStr, reqStr))
 lineNum = i;
 end;
 if ~ischar(lineStr), break, end;
 i = i + 1;
 end;
 fclose(fid);
 openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)
 % Read the entire file into a variable
 fid = fopen(filePath,'r');
 contents = char(fread(fid)');
 fclose(fid);

 % Find all the requirement items
 fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

 % Combine and sort the list
 items = [fList1{:}]';
 items = sort(items);
 items = strcat('@',items);

 if (~iscell(items) && length(items)>0)
 locations = {items};
 labels = {items};
 else
 locations = [items];
 labels = [items];
 end

 depths = [];

3 To register the custom link type ABC, type the following MATLAB command:

rmi register rmicustabcinterface

The ABC file type appears on the “Outgoing Links Editor” on page 10-6 drop-down list of
document types.

4 Create a text file with the .abc extension containing several requirement items marked by the
Requirement:: string.

 Custom Link Types

10-9

For your convenience, an example file ships with your installation. The example file is
matlabroot\toolbox\slvnv\rmidemos\demo_req_1.abc. demo_req_1.abc contains the
following content:

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet
Desired Altitude - feet

Description:

When the autopilot is in altitude climb
control mode, the controller maintains a
constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

End of "Altitude Climb Control">

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <
 30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

End of "Altitude Hold"

Requirement:: "Autopilot Disable"

Altitude hold control and altitude climb
control are disabled when autopilot enable
is false.

10 URL and Custom Traceability

10-10

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

ENd of "Autopilot Disable"

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

End of "Glide Slope Armed"

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and
 Distance < 10000

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target
altitude the actual target climb rate is the
negative of the user setting.

End of "Glide Slope Coupled"
5 Open the aero_dap3dof model. At the MATLAB command line, enter:

openExample('simulink_aerospace/DevelopingTheApolloLunarModuleDigitalAutopilotExample')

Close the Apollo Lunar Module Descent Animation.

 Custom Link Types

10-11

6 In the aero_dap3dof model, right-click the Reaction Jet Control subsystem and select
Requirements > Open Outgoing Links dialog.

The Outgoing Links Editor opens.
7 Click New to add a new requirement link. The Document type drop-down list now contains the

ABC file (for demonstration) option.

8 Set Document type to ABC file (for demonstration) and browse to the matlabroot
\toolbox\slvnv\rmidemos\demo_req_1.abc file. The browser shows only the files with
the .abc extension.

9 To define a particular location in the requirements document, use the Location field.

In this example, the rmicustabcinterface function specifies two types of location delimiters
for your requirements:

• > — Line number in a file
• @ — Named item, such as a bookmark, function, or HTML anchor

Note The rmi reference page describes other types of requirements location delimiters.

The Location drop-down list contains these two types of location delimiters whenever you set
Document type to ABC file (for demonstration).

10 Select Line number. Enter the number 26, which corresponds with the line number for the
Altitude Hold requirement in demo_req_1.abc.

11 In the Description field, enter Altitude Hold, to identify the requirement by name.
12 Click Apply.
13 Verify that the Altitude Hold requirement links to the Reaction Jet Control subsystem. Right-

click the subsystem and select Requirements > 1. “Altitude Hold”.

10 URL and Custom Traceability

10-12

Create a Document Index

A document index is a list of all the requirements in a given document. To create a document index,
MATLAB uses file I/O functions to read the contents of a requirements document into a MATLAB
variable. The RMI extracts the list of requirement items.

The example requirements document, demo_req_1.abc, defines four requirements using the string
Requirement::. To generate the document index for this ABC file, the ContentsFcn function in
rmicustabcinterface.m extracts the requirements names and inserts @ before each name.

For the demo_req_1.abc file, in the Outgoing Links: Reaction Jet Control dialog box, click the
Document Index tab. The ContentsFcn function generates the document index automatically.

Implement Custom Link Types
To implement a custom link type:

1 Create a MATLAB function file based on the custom link type template, as described in “Custom
Link Type Functions” on page 10-14.

2 Customize the custom link type file to specify the link type properties and custom callback
functions required for the custom link type, as described in “Link Type Properties” on page 10-3.

 Custom Link Types

10-13

3 Register the custom link type using the rmi command 'register' option, as described in
“Custom Link Type Registration” on page 10-15.

Why Create a Custom Link Type?
In addition to linking to built-in types of requirements documents, you can register custom
requirements document types with the Requirements Management Interface (RMI). Then you can
create requirement links from your model to these types of documents.

With custom link types, you can:

• Link to requirement items in commercial requirement tracking software
• Link to in-house database systems
• Link to document types that the RMI does not support

The custom link type API allows you to define MATLAB functions that enable linking between your
Simulink model and your custom requirements document type. These functions also enable new link
creation and navigation between the model and documents.

For example, navigation involves opening a requirements document and finding the specific
requirement record. When you click your custom link in the content menu of a linked object in the
model, Simulink uses your custom link type navigation function to open the document and highlight
the target requirement based on the implementation provided. The navigation function you
implement uses the available API to communicate with your requirements storage application.

Typically, MATLAB runs an operating system shell command or uses ActiveX communication for
sending navigation requests to external applications.

Alternatively, if your requirements are stored as custom variants of text or HTML files, you can use
the built-in editor or Web browser to open the requirements document.

Custom Link Type Functions
To create a MATLAB function file, start with the custom link type template, located in:

matlabroot\toolbox\slrequirements\linktype_examples\linktype_TEMPLATE.m

Your custom link type function:

• Must exist on the MATLAB path with a unique function and file name.
• Cannot require input arguments.
• Must return a single output argument that is an instance of the requirements link type class.

To view similar files for the built-in link types, see the following files in matlabroot\toolbox
\slrequirements\linktype_examples\:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_text.m

10 URL and Custom Traceability

10-14

Custom Link Type Registration
Register your custom link type by passing the name of the MATLAB function file to the rmi command
as follows:

rmi register mytargetfilename

Once you register a link type, it appears in the “Outgoing Links Editor” on page 10-6 as an entry in
the Document type drop-down list. A file in your preference folder contains the list of registered link
types, so the custom link type is loaded each time you run MATLAB.

When you create links using custom link types, the software saves the registration name and the
other link properties specified in the function file. When you attempt to navigate to such a link, the
RMI resolves the link type against the registered list. If the software cannot find the link type, you see
an error message.

You can remove a link type with the following MATLAB command:

rmi unregister mytargetfilename

Custom Link Type Synchronization
After you implement custom link types for RMI that allow you to establish links from Simulink objects
to requirements in your requirements management application (RM application), you can implement
synchronization of the links between the RM application and Simulink using Simulink Requirements
functions. Links can then be reviewed and managed in your RM application environment, while
changes made are propagated to Simulink.

You first create the surrogate objects in the RM application to represent Simulink objects of interest.
You then automate the process of establishing traceability links between these surrogate objects and
other items stored in the RM application, to match links that exist on the Simulink side. After
modifying or creating new associations in the RM application, you can propagate the changes back to
Simulink. You use Simulink Requirements to implement synchronization of links for custom
requirements documents. However, this functionality is dependent upon the automation and inter-
process communication APIs available in your RM application. You use the following Simulink
Requirements functions to implement synchronization of links between RM applications and
Simulink.

To get a complete list of Simulink objects that may be considered for inclusion in the surrogate
module:

[objHs, parentIdx, isSf, objSIDs] = rmi...
('getObjectsInModel', modelName);

This command returns:

• objHs, a complete list of numeric handles
• objSIDs, a complete list of corresponding session-independent Simulink IDs
• isSf, a logical array that indicates which list positions correspond to which Stateflow objects
• parentIdx, an array of indices that provides model hierarchy information

When creating surrogate objects in your RM application, you will need to store objSIDs values – not
objHs values – because objHs values are not persistent between Simulink sessions.

 Custom Link Types

10-15

To get Simulink object Name and Type information that you store on the RM application side:

[objName, objType] = rmi('getObjLabel', slObjectHandle);

To query links for a Simulink object, specified by either numeric handle or SID:

linkInfo = rmi('getLinks', slObjectHandle)
linkInfo = rmi('getLinks', sigBuildertHandle, m)
% Signal Builder group "m" use case.
linkInfo = rmi('getLinks', [modelName objSIDs{i}]);

linkInfo is a MATLAB structure that contains link attributes. See the rmi function reference page
for more details.

After you retrieve the updated link information from your RM application, populate the fields of
linkData with the updated values, and propagate the changes to Simulink:

rmi('setLinks', slObjectHandle, linkData)

For an example MATLAB script implementing synchronization with a Microsoft Excel Workbook, see
the following:

edit([matlabroot '/toolbox/slrequirements/...
linktype_examples/slSurrogateInExcel.m'])

You can run this MATLAB script on the example model slvnvdemo_fuelsys_officereq to
generate the Excel workbook surrogate for the model.

10 URL and Custom Traceability

10-16

Implement RMI Extension for Support of Custom Document
Type

Requirements Management Interface (RMI) provides tools for creating and reviewing links between
model-based design elements and requirements documents. RMI provides built-in support for many
document types. Additionally, you can implement custom link-type extensions to enable linking to
other document types. This example illustrates implementation of RMI extension for linking with
Microsoft PowerPoint presentations.

Files to Use with this Example

For the purposes of this example tutorial, you will link objects in the
slvnvdemo_powerwindowController.slx model with slides in the
powerwindowController.pptx PowerPoint presentation. Open the Simulink model
slvnvdemo_powerwindowController.slx.

open_system('slvnvdemo_powerwindowController');

Set Up Requirements Manager to Work with Links
1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements Browser, in the View drop-down menu, select Links.

In this example, you will work exclusively in the Requirements tab and any references to toolstrip
buttons are in this tab.

Store Links Externally

In the slvnvdemo_powerwindowController model, configure the settings to store links externally.
In the Requirements tab, select Link Settings > Default Link Storage. This will open the
Requirements Settings dialog box. Under the heading Default storage mode for traceability
data select Store externally (in a separate *.slmx file). Alternatively, evaluate the following code.

rmipref('StoreDataExternally', true);

Installed Link Type Definition Files

Depending on the application you use for your custom-type documents, you can implement basic
support, including link creation via the Outgoing Links dialog box and link navigation via context
menu shortcuts, or you may choose to implement a more feature-rich support with selection linking
via context menu shortcuts, consistency checking, etc.

In this tutorial you will use a Custom Link Type definition which was created from scratch. To find out
more about the Custom Link Type extension API, please refer to the included
linktype_TEMPLATE.m by evaluating the following:

 Implement RMI Extension for Support of Custom Document Type

10-17

edit([matlabroot,'/toolbox/slrequirements/linktype_examples/linktype_TEMPLATE.m'])

You can also review the actual linktype definition files used by the released product. For an example,
refer to the minimal Text File link type by evaluating the following:

edit([matlabroot,'/toolbox/slrequirements/linktype_examples/linktype_rmi_text.m'])

You can also refer to the more advanced Microsoft Excel Workbook link type:

edit([matlabroot,'/toolbox/slrequirements/linktype_examples/linktype_rmi_excel.m'])

Create and Register a Stubbed Link Type File

The file rmidemo_pp_linktype.m in the current working directory contains link type information
for the RMI to work with Microsoft PowerPoint files. Register the link type with the RMI by
evaluating the following.

rmi('register', 'rmidemo_pp_linktype')

This instructs RMI to recognize the filename extensions .ppt and .pptx as supported files and to
use the methods defined here for RMI functionality.

Create the First Link

• Right-click the background of the slvnvdemo_powerwindowController example model. In the
context menu, select Requirements at This Level > Open Outgoing Links Dialog... to bring
up the Outgoing Links dialog box.

• Click New to create a new link.
• Expand the Document type drop-down list. Select Microsoft PowerPoint at the bottom of the

list.
• Use the Browse button to locate powerwindowController.pptx.
• Enter a Description label, like Example Presentation.
• Click OK to save the new link and close the dialog.

10 URL and Custom Traceability

10-18

Alternatively, you can evaluate the following code to create the link. This code fills in the link
destination information first, then uses the rmi function to create links.

firstReq = rmi('createempty');
firstReq.reqsys = 'rmidemo_pp_linktype';
firstReq.doc = 'powerwindowController.pptx';
firstReq.description = 'Example presentation';
rmi('set', 'slvnvdemo_powerwindowController', firstReq);

Navigation to the Document

Navigation to the PowerPoint document is provided with functions in the rmidemo_pp_linktype.m
file.Implementation of this and all other methods requires detailed knowledge of the APIs available in
the application that manages the requirements documents. For this Microsoft PowerPoint example
you will use COM API. You will use the actxserver command in MATLAB to create a connection
with the PowerPoint application. Then, you will use calls like
Application.Presentations.Open(FILENAME) to manipulate the PowerPoint application via the
rmidemo_pp_linktype methods. See Microsoft's Developer Reference pages for information on
which PowerPoint Objects and Methods are available via COM API.

The rmidemo_pp_linktype.m file contains functions to find the correct .pptx file.

 Implement RMI Extension for Support of Custom Document Type

10-19

https://docs.microsoft.com/en-us/office/vba/api/overview/PowerPoint/object-model

Return to the Simulink model for slvnvdemo_powerwindowController. Right-click the Simulink
diagram background and navigate to Requirements at This Level again from the context menu.
Notice the new navigation shortcut at the top of the submenu. When you click this new shortcut,
MATLAB opens the PowerPoint file.

You can navigate to the link the same way as before, or by evaluating the following:
rmi('view','slvnvdemo_powerwindowController', 1)

Implement Navigation to a Given Slide Number

Suppose you want to link the Truth Table block that connects to the driver input of the control
subsystem block to the corresponding slide number 5 in the PowerPoint presentation. Navigate to the
Truth Table block or evaluate the following code.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Truth Table')

• Right-click the block, select Requirements > Open Outgoing Links Dialog... to bring up the
Outgoing Links dialog box.

• Click New to create a new link.
• Specify the document type and filename as before.
• Enter Driver input into the Description field.
• Enter 5 into the Location/Identifier input field.
• Click OK to save the new link.

10 URL and Custom Traceability

10-20

If you navigate this link from the Simulink diagram, the document will open as before, but it will now
scroll down to 5th slide. The helper goToSlide() method along with code in the NavigateFcn()
function open the correct slide.

function goToSlide(hDoc, slideNum)
 disp(['Opening slide #' num2str(slideNum)]);
 hDoc.Slides.Item(slideNum).Select;
end

Navigate to the link by selecting the Truth Table block, right-clicking and selecting Requirements
> 1. "Driver input". The PowerPoint presentation window should scroll down to the 5th slide.

 Implement RMI Extension for Support of Custom Document Type

10-21

Alternatively, create the link by evaluating the following code. This code fills in the link destination
information first, then uses the rmi function to create links.

secondReq = rmi('createempty');
secondReq.reqsys = 'rmidemo_pp_linktype';
secondReq.doc = 'powerwindowController.pptx';
secondReq.description = 'Driver input';
secondReq.id = '#5';
rmi('set', 'slvnvdemo_powerwindowController/Truth Table', secondReq);

You can navigate to the link the same way as before, or by evaluating the following:
rmi('view','slvnvdemo_powerwindowController/Truth Table', 1)

Linking and Navigation to Slide ID

Linking to a stored slide number can be problematic: links may get stale when you modify the
document. For example, duplicate the first slide in our presentation:

10 URL and Custom Traceability

10-22

Now all the other slides shift down by one. Navigation from the Driver Input Truth Table block will
bring up the wrong slide. You need to use a different location type, other than Page/Item number.

• Select the same Truth Table block which connects to the driver input of the control
subsystem. The following code navigates to the Truth Table block.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Truth Table')

• Right-click the block, select Requirements > Open Outgoing Links Dialog... to bring up the
Outgoing Links dialog box.

• Click New to create a new link.
• Select Named Item from the Location (Type/Identifier) drop-down list.
• Enter 260 into the Location input field.
• Click OK to save the modified link.

"260" is a persistent ID for the Driver Input slide (more on this below).

Now, after this change, navigation from the Driver Input Truth Table block will bring up the
correct slide, even after its order number changes.

Unfortunately, one cannot see slide IDs in the PowerPoint application UI. To find out the ID for the 5th
slide, you can use the COM API:

>> hApp = actxGetRunningServer('powerpoint.application');
>> hDoc = hApp.ActivePresentation;
>> hDoc.Slides.Item(5).SlideID
ans =
 260

 Implement RMI Extension for Support of Custom Document Type

10-23

More user-friendly solutions to this problem are covered in the sections below.

Alternatively, you can create the link using the following code. This code fills in the link destination
information first, then uses the rmi function to create links.

betterLink = rmi('createempty');
betterLink.reqsys = 'rmidemo_pp_linktype';
betterLink.doc = 'powerwindowController.pptx';
betterLink.description = 'Driver input - better link';
betterLink.id = '@260';
rmi('set', 'slvnvdemo_powerwindowController/Truth Table', betterLink);

You can navigate to the link destination the same way as before, or evaluate the following:
rmi('view','slvnvdemo_powerwindowController/Truth Table', 1)

Linking Using Document Index Tab

As shown above, you can create persistent links that do not become stale after slides in linked
presentation are re-ordered, but you do not have easy access to persistent SlideID values in
PowerPoint. One possible solution is to select a desired slide in the Document Index tab of the
Outgoing Links dialog. The content of the Document Index tab is controlled by the ContentsFcn()
method in the linktype definition file. you can provide implementation for this method, such that the
persistent SlideID value is stored by RMI when creating a link, instead of the volatile SlideNumber
value.

The ContentsFcn() methods returns three arrays:

• labels to use for Document Index list items and navigation shortcuts
• depths to indicate the hierarchical relationship of listed items (unused in this example)
• locations to use for stored unique IDs

The ContentsFcn() implementation relies on the following PowerPoint API call to populate location
values:

hDoc.Slides.Item(k).SlideID

This ensures persistent navigation information even after slide order changes. Note that you use @ as
a prefix for locations values, to indicate that the number that follows stores the Named Item
location value instead of slide (page) number location value.

Use the Document Index tab in the Outgoing Link Editor to create a link.

• Navigate to the Truth Table1 block which connects to the passenger input of the control
subsystem block. The following code navigates to the Truth Table1 block.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Truth Table1')

• Right-click the block, select Requirements > Open Outgoing Links Dialog... to bring up the
Outgoing Links dialog box.

• Click New to create a new link.
• Specify Microsoft PowerPoint as the Document type.
• Specify powerwindowController.pptx as the Document from the Browse menu.
• Leave the Description input.

10 URL and Custom Traceability

10-24

• Instead of specifying Location manually, switch to the Document Index tab, locate the line that
corresponds to Passenger Inputs slide, and double-click the line.

• Notice that the remaining input fields are automatically filled with the correct information.
• Click OK to save the new link.

Navigate to the link by right-clicking the Truth Table1 block and selecting Requirements >
1."Passenger Input consists of a vector with three elements in
powerwindowController.pptx". This link should work correctly even after slides are shifted or re-
ordered.

Alternatively you can create the link by evaluating the following code. The link ID is created the same
way as in the previous section, where a persistent ID is set. This code fills in the link destination
information first, then uses the rmi function to create links.

indexLink = rmi('createempty');
indexLink.reqsys = 'rmidemo_pp_linktype';
indexLink.doc = 'powerwindowController.pptx';
indexLink.description = 'Passenger input - linked via Index tab';
indexLink.id = '@259';
rmi('set', 'slvnvdemo_powerwindowController/Truth Table1', indexLink);

 Implement RMI Extension for Support of Custom Document Type

10-25

Navigate to the link the same way as above, or evaluate the following:
rmi('view','slvnvdemo_powerwindowController/Truth Table1', 1)

Link to the Current Slide in PowerPoint

An even better way to support robust persistent links is via Selection Linking Shortcuts. The RMI API
allows you to define the SelectionLinkFcn() function for linking with the current object in the
current document. In the next step of our tutorial, you will automate linking to the current slide in the
currently open PowerPoint presentation.

The Requirements section of the context menus display a shortcut for linking with the current slide
in PowerPoint.

• In your copy of the PowerPoint presentation example, navigate to slide 6 titled Top or bottom
of the window frame is reached.

• In the Simulink diagram, right-click the endstop block.

rmidemo_callback('locate','slvnvdemo_powerwindowController/endstop')

• Right-click the block and select Requirements > Link to Slide in PowerPoint from the context
menu

10 URL and Custom Traceability

10-26

The RMI will automatically create a link to the SlideID that corresponds to the current location in the
active presentation. The RMI will try to use the header text of the target slide as a label for the new
link.

To navigate to the link, right-click the endstop block again and select Requirements > 1."Top or
bottom of the window frame is rea...". The PowerPoint program should open to the correct slide.

Alternatively, you can create the link using the following code. The link ID is created the same way as
in the previous section, where a persistent ID is set. This code fills in the link destination information
first, then uses the rmi function to create links.

 Implement RMI Extension for Support of Custom Document Type

10-27

selectionLink = rmi('createempty');
selectionLink.reqsys = 'rmidemo_pp_linktype';
selectionLink.doc = 'powerwindowController.pptx';
selectionLink.description = 'Endstop signal - selection link';
selectionLink.id = '@261';
rmi('set', 'slvnvdemo_powerwindowController/endstop', selectionLink);

You can navigate to the link the same way as above, or you can evaluate the following:
rmi('view','slvnvdemo_powerwindowController/endstop', 1)

Create Bidirectional Links

As a final step of this tutorial you will extend the SelectionLinkFcn() function to optionally insert
a hyperlink in the current slide, for navigation from PowerPoint to the linked object in Simulink.

Your PowerPoint link type allows automated insertion of Simulink navigation controls into linked
slides, when you use Link to Slide in PowerPoint shortcut in the context menu for Simulink objects.
To activate this feature, in the Simulink model select the Requirements tab. Then select Link
Settings > Linking Options. Alternatively, evaluating the following code will open this dialog box:
rmi_settings_dlg.

Under the When creating selection-based links heading, make sure that Modify destination for
bidirectional linking is checked. Alternatively, the following code will set these settings.

origMcState = rmipref('UnsecureHttpRequests', true);
origTwoWayPref = rmipref('BiDirectionalLinking', true);

Beginning in R2019a, MATLAB's embedded HTTP service is activated on a secure port 31515, but not
on an unsecure port 31415. Because our navigation URLs cannot use the secure port without
certificate installation, you should also select the Enable external connectivity at MATLAB
startup checkbox at the bottom of this tab.

To try this out, repeat the selection linking procedure for the obstacle signal input block, to
associate it with the corresponding slide in the example presentation.

• Navigate to slide 7 in powerwindowController.pptx (make it the active slide).
• Navigate to the obstacle block in the Simulink model.

rmidemo_callback('locate','slvnvdemo_powerwindowController/obstacle')

• Right-click the block and select Requirements > Link to Slide in PowerPoint from the context
menu.

You should now see a new RMI icon inserted at the top-left corner of the slide.

10 URL and Custom Traceability

10-28

Follow Microsoft PowerPoint's instructions to follow the link, and it should highlight the
corresponding block in the slvnvdemo_powerwindowController model.

Importing Items from PowerPoint Document into Simulink Requirements

Simulink Requirements product includes document import capability, if your Custom Linktype
definition includes all the needed pieces. Using the customization file rmidemo_pp_linktype.m and
slreq.import() API, you can automatically pull-in the contents as objects of type
slreq.Reference or slreq.Requirement, and save into .slreqx file. Refer to slreq.import
for further information.

Because our custom document type definition does not provide implementation for HtmlViewFcn(),
only plain-text import will work.

Make sure the document is open in PowerPoint before you run the slreq.import() command. The
importer will display the number of imported items, which for our case corresponds to the number of
slides. Use slreq.editor command to bring-up the Simulink Requirements Editor UI. Expand the
document node to browse imported items. Click "Show in document" button to navigate from
imported reference to original item in source document.

 Implement RMI Extension for Support of Custom Document Type

10-29

https://www.mathworks.com/help/slrequirements/ref/slreq.editor.html

Alternatively, follow these steps to import the requirements from the command line.

• Make sure that the powerwindowController.pptx document is open before import:

rmi('view','slvnvdemo_powerwindowController', 1)

• Import the requirements using:

slreq.import('rmidemo_pp_linktype', 'AsReference', true, 'RichText', false)

• View the requirements in the Requirements Editor with slreq.editor

Where to Go from Here

As opposed to linking to a Slide as a whole, you may want to modify the SelectionLinkFcn()
implementation to link to a specific text or picture in the slide. Refer to Microsoft's Developer
Reference pages for information on how to adjust the anchoring and appearance of Simulink
navigation controls. For example, instead of inserting an icon with a hyperlink, you may want to
attach a hyperlink to the selected text on the current slide.

If you need to link to a Search text pattern, irrespective of which slide includes the stored text, you
can extend the declaration of supported location types to include the ? character:

 linkType.LocDelimiters = '#@?';

10 URL and Custom Traceability

10-30

https://docs.microsoft.com/en-us/office/vba/api/overview/PowerPoint/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/PowerPoint/object-model

You should then provide an additional case for switch(locationStr(1)) in the NavigateFcn()
method. The corresponding findText() helper queries the PowerPoint Presentation object for all
TextFrame items in all Slides and selects the item with the matching text.

The RMI link type template supports other methods, depending on your needs. For example, to have
your custom links covered by Requirements Consistency Checking, consider implementing the
following methods:

• IsValidDocFcn()
• IsValidIdFcn()
• IsValidDescFcn()

To adjust the way your links are displayed in generated reports, you can use:

• CreateURLFcn()
• UrlLabelFcn()
• DocDateFcn()
• DetailsFcn()
• HtmlViewFcn()

If your application is not file-based, but uses a proprietary database to store requirements
documents, you must mark the link type as "not a file":

linkType.IsFile = 0;

and provide a specialized implementation for BrowseFcn(). This is the function that gets called
when you click the Browse button in the Outgoing Links dialog.

rmi('edit','slvnvdemo_powerwindowController');

Cleanup

Cleanup commands. Unregisters rmidemo_pp_linktype, clears open requirement sets without
saving changes, and closes open models without saving changes.

rmi('unregister', 'rmidemo_pp_linktype');
slreq.clear();
bdclose all;

 Implement RMI Extension for Support of Custom Document Type

10-31

Review and Maintain Requirements
Links

• “Highlight Model Objects with Requirements” on page 11-2
• “Navigate to Simulink Objects from External Documents” on page 11-4
• “View Requirements Details for a Selected Block” on page 11-6
• “Generate Code for Models with Requirements Links” on page 11-8
• “Create and Customize Requirements Traceability Reports” on page 11-10
• “Create Requirements Traceability Report for A Project” on page 11-25
• “Validate Requirements Links” on page 11-26
• “Delete Requirements Links from Simulink Objects” on page 11-34
• “Document Path Storage” on page 11-35
• “How to Include Linked Requirements Details in Generated Report” on page 11-37
• “Managing Requirements Without Modifying Simulink Model Files” on page 11-44

11

Highlight Model Objects with Requirements
To review traceability in your model, you can highlight model objects that have requirements links.

Highlight Model Objects with Requirements Using Model Editor
If you are working in the Simulink Editor and want to see which model objects in the
slvnvdemo_fuelsys_officereq model have requirements, follow these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Select Coverage Highlighting from the Coverage app.

Two types of highlighting indicate model objects with requirements:

• Yellow highlighting indicates objects that have requirements links for the object itself.

• Orange outline indicates objects, such as subsystems, whose child objects have requirements
links.

Objects that do not have requirements are colored gray.

11 Review and Maintain Requirements Links

11-2

matlab:slvnvdemo_fuelsys_officereq

3 You remove the highlighting from the model from the Coverage app. Alternatively, you can right-
click anywhere in the model, and select Remove Highlighting.

While a model is highlighted, you can still manage the model and its contents.

Highlight Model Objects with Requirements Using Model Explorer
If you are working in Model Explorer and want to see which model objects have requirements, follow
these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 In the Modeling tab, click Model Explorer.
3 To highlight all model objects with requirements, click the Highlight items with requirements

on model icon ().

The Simulink Editor window opens, and all objects in the model with requirements are
highlighted.

Note If you are running a 64-bit version of MATLAB, when you navigate to a requirement in a PDF
file, the file opens at the beginning of the document, not at the specified location.

 Highlight Model Objects with Requirements

11-3

matlab:slvnvdemo_fuelsys_officereq

Navigate to Simulink Objects from External Documents
The RMI includes several functions that simplify creating navigation interfaces in external
documents. The external application that displays your document must support an application
programming interface (API) for communicating with the MATLAB software.

Provide Unique Object Identifiers
Whenever you create a requirement link for a Simulink or Stateflow object, the RMI uses a globally
unique identifier for that object. This identifier identified the object. The identifier does not change if
you rename or move the object, or add or delete requirement links. The RMI uses the unique
identifier only to resolve an object within a model.

Use the rmiobjnavigate Function
The rmiobjnavigate function identifies the Simulink or Stateflow object, highlights that object, and
brings the editor window to the front of the screen. When you navigate to a Simulink model from an
external application, invoke this function.

The first time you navigate to an item in a particular model, you might experience a slight delay while
the software initializes the communication API and the internal data structures. You do not
experience a long delay on subsequent navigation.

Determine the Navigation Command
To create a requirement link for a Simulink or Stateflow object, at the MATLAB prompt, use the
following command to find the navigation command, where obj is a handle or a uniquely resolved
name for the object:

[navCmd, objPath] = rmi('navCmd', obj);

The return values of the navCmd method are:

• navCmd — A character vector that navigates to the object when evaluated by the MATLAB
software.

• objPath — A character vector that identifies the model object.

Send navCmd to the MATLAB software for evaluation when navigating from the external application
to the object obj in the Simulink model. Use objPath to visually identify the target object in the
requirements document.

Use the ActiveX Navigation Control
The RMI uses software that includes a special Microsoft ActiveX control to enable navigation to
Simulink objects from Microsoft Word and Excel documents. You can use this same control in any
other application that supports ActiveX within its documents.

The control is derived from a push button and has the Simulink icon. There are two instance
properties that define how the control works. The tooltipstring property is displayed in the
control tooltip. The MLEvalCmd property is the character vector that you pass to the MATLAB
software for evaluation when you click the control.

11 Review and Maintain Requirements Links

11-4

Typical Code Sequence for Establishing Navigation Controls
When you create an interface to an external tool, you can automate the procedure for establishing
links. This way, you do not need to manually update the dialog box fields. This type of automation
occurs as part of the selection-based linking for certain built-in types, such as Microsoft Word and
Excel documents.

To automate the procedure for establishing links:

1 Select a Simulink or Stateflow object and an item in the external document.
2 Invoke the link creation action either from a Simulink menu or command, or a similar mechanism

in the external application.
3 Identify the document and current item using the scripting capability of the external tool. Pass

this information to the MATLAB software. Create a requirement link on the selected object using
the RMI API as follows:

a Create an empty link structure using the following command:

rmi('createempty')
b Fill in the link structure fields based on the target location in the requirements document.
c Attach the link to the object using the following command:

rmi('cat')
4 Determine the MATLAB navigation command that you must embed in the external tool, using the

navCmd method:

[navCmd, objPath] = rmi('navCmd',obj)
5 Create a navigation item in the external document using the scripting capability of the external

tool. Set the MATLAB navigation command in the property.

When using ActiveX navigation objects provided by the external tool, set the MLEvalCmd
property to the navCmd and set the tooltipstring property to objPath.

You define the MATLAB code implementation of this procedure as the SelectionLinkFcn function
in the link type definition file. The following files in matlabroot\toolbox\slrequirements
\linktype_examples contain examples of how to implement this functionality:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_text.m

 Navigate to Simulink Objects from External Documents

11-5

View Requirements Details for a Selected Block
When a Simulink block has linked requirements, you can view the requirement details in the Simulink
canvas with the Requirements Manager app.

Identify Blocks with Links
You can use the Requirements Manager app to identify blocks with links. In Simulink, in the Apps
tab, open the Requirements Manager. Blocks that have associated outgoing links have a
requirements badge (). You can also highlight blocks that have associated outgoing links when, in
the Requirements tab, you click Highlight Links.

Configure Settings
To configure settings in the Requirements Manager so that you can view requirement details in the
Simulink canvas:

1 In the Requirements tab, ensure that Layout > Requirements Browser and Layout >
Property Inspector are selected.

2 In the Requirements pane, in the View drop-down menu, select Requirements.

View Requirements Details
Once you've identified blocks that have associated outgoing links, you can select a block to see if it
has a linked requirement. When you select a block, all outgoing link destination summaries are
displayed in the Property Inspector, in the Info tab, under Links. You can identify linked
requirements by the icon displayed next to the requirement summary: (slreq.Requirement

object), (slreq.Reference object or direct link to requirement in third-party application), or
 (unlocked slreq.Reference).

To view the requirement details, click the requirement link in the Info tab. If the requirement is
stored in Simulink Requirements, the Requirements pane will scroll to the linked requirement and
highlight it. If the block only has one linked requirement and you select the block, the Requirements
pane will automatically scroll to the requirement and highlight it.

11 Review and Maintain Requirements Links

11-6

Select the highlighted requirement in the Requirements pane. The Property Inspector displays the
requirement details.

Note If the Simulink block is linked to a requirement in a third-party application, you cannot view
the requirement details directly in Simulink. When you click the requirement summary in the Info
tab, the source document will open in the third-party application.

Create a Requirement Annotation
You can use annotations to quickly view requirements details and call out linked requirements. Click
the requirements badge () on a Simulink block to see the outgoing links. To create an annotation:

1 Click the requirements badge () on a Simulink block to view the linked requirements.
2 Click Show next to the requirement link to add an annotation to the Simulink canvas. The

annotation displays the requirement ID, requirement summary, and link type. You can show or
hide the requirement description by double-clicking the annotation.

3 Click the annotation. The Property Inspector displays additional requirement details.

You cannot create an annotation for requirements stored in third-party tools.

See Also
“Navigate to Requirements from Model” on page 8-16

 View Requirements Details for a Selected Block

11-7

Generate Code for Models with Requirements Links
To specify that generated code of an ERT target include requirements:

1 Open the rtwdemo_requirements example model.
2 In the Modeling tab, click Model Settings.
3 In the Select tree of the Configuration Parameters dialog box, select the Code Generation

node.

The currently configured system target must be an ERT target.

4 Under Code Generation, select Comments.
5 In the Custom comments section on the right, select the Requirements in block comments

check box.
6 Under Code Generation, select Report.
7 On the Report pane, select:

• Create code generation report
• Open report automatically

8 Press Ctrl+B to build the model.
9 In the code-generation report, open rtwdemo_requirements.c.
10 Scroll to the code for the Pulse Generator block, clock. The comments for the code associated

with that block include a hyperlink to the requirement linked to that block.

11 Click the link Clock period shall be consistent with chirp tolerance to open the
HTML requirements document to the associated requirement.

Note When you click a requirements link in the code comments, the software opens the
application for the requirements document, except if the requirements document is a DOORS
module. To view a DOORS requirement, start the DOORS software and log in before clicking the
hyperlink in the code comments.

11 Review and Maintain Requirements Links

11-8

How Requirements Information Is Included in Generated Code
After you simulate your model and verify its performance against the requirements, you can generate
code from the model for an embedded real-time application. The Embedded Coder software
generates code for Embedded Real-Time (ERT) targets.

If the model has any links to requirements, the Embedded Coder software inserts information about
the requirements links into the code comments.

For example, if a block has a requirement link, the software generates code for that block. In the code
comments for that block, the software inserts:

• Requirement description
• Hyperlink to the requirements document that contains the linked requirement associated with

that block

Note

• You must have a license for Embedded Coder to generate code for an embedded real-time
application.

• If you use an external .req file to store your requirement links, to avoid stale comments in
generated code, before code generation, you must save any change in your requirement links. For
information on how to save, see “Save Requirements Links in External Storage” on page 5-4.

Comments for the generated code include requirements descriptions and hyperlinks to the
requirements documents in the following locations.

Model Object with Requirement Location of Code Comments with
Requirements Links

Model In the main header file, <model>.h
Nonvirtual subsystem At the call site for the subsystem
Virtual subsystem At the call site of the closest nonvirtual parent

subsystem. If a virtual subsystem does not have a
nonvirtual parent, requirement descriptions
appear in the main header file for the model,
<model>.h.

Nonsubsystem block In the generated code for the block
MATLAB code line in MATLAB Function block In the generated code for the MATLAB code

line(s)

 Generate Code for Models with Requirements Links

11-9

Create and Customize Requirements Traceability Reports

Create Requirements Traceability Report for Model
To create the default requirements report for a Simulink model:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Make sure that your current working folder is writable.
3 In the Apps tab, click Requirements Manager. In the Requirements tab, select Share >

Generate Model Traceablity Report.

If your model is large and has many requirements links, it takes a few minutes to create the
report.

A Web browser window opens with the contents of the report. The following graphic shows the Table
of Contents for the slvnvdemo_fuelsys_officereq model.

A typical requirements report includes:

• Table of contents
• List of tables
• Per-subsystem sections that include:

• Tables that list objects with requirements and include links to associated requirements
documents

11 Review and Maintain Requirements Links

11-10

• Graphic images of objects with requirements
• Lists of objects with no requirements
• MATLAB code lines with requirements in MATLAB Function blocks

For detailed information about requirements reports, see “Customize Requirements Traceability
Report for Model” on page 11-11.

If Your Model Has Library Reference Blocks

To include requirements links associated with library reference blocks, you must select Include links
in referenced libraries and data dictionaries under the Report tab of the Requirements
Settings, as described in “Customize Requirements Report” on page 11-19.

If Your Model Has Model Reference Blocks

By default, requirements links within model reference blocks in your model are not included in
requirements traceability reports. To generate a report that includes requirements information for
referenced models, follow the steps in “Report for Requirements in Model Blocks” on page 11-18.

Customize Requirements Traceability Report for Model
Create Default Requirements Report

If you have a model that contains links to external requirements documents, you can create an HTML
report that contains summarized and detailed information about those links. In addition, the report
contains links that allow you to navigate to both the model and to the requirements documents.

You can generate a default report with information about all the requirements associated with a
model and its objects.

Note If the model for which you are creating a report contains Model blocks, see “Report for
Requirements in Model Blocks” on page 11-18.

Before you generate the report, add a requirement to a Stateflow chart to see information that the
requirements report contains about Stateflow charts:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 Open the Microsoft Word requirements document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/...
 slvnvdemo_FuelSys_RequirementsSpecification.docx

4 Create a link from the control logic Stateflow chart to a location in this document.
5 Keep the example model open, but close the requirements document.

To generate a default requirements report for the slvnvdemo_fuelsys_officereq model, in the
Requirements tab, select Share > Generate Model Traceablity Report.

 Create and Customize Requirements Traceability Reports

11-11

The Requirements Management Interface (RMI) searches through all the blocks and subsystems in
the model for associated requirements. The RMI generates and displays a complete report in HTML
format.

The report is saved with the default name, model_name_requirements.html. If you generate a
subsequent report on the same model, the new report file overwrites any earlier report file.

The report contains the following content:

Table of Contents

The Table of Contents lists the major sections of the report. There is one System section for the
top-level model and one System section for each subsystem, Model block, or Stateflow chart.

Click a link to view information about a specific section of the model.

List of Tables

The List of Tables includes links to each table in the report.

11 Review and Maintain Requirements Links

11-12

Model Information

The Model Information contains general information about the model, such as when the model was
created and when the model was last modified.

Documents Summary

The Documents Summary section lists all the requirements documents to which objects in the
slvnvdemo_fuelsys_officereq model link, along with some additional information about each
document.

 Create and Customize Requirements Traceability Reports

11-13

• ID — The ID. In this example, DOC1, DOC2, DOC3, and DOC4 are short names for the
requirements documents linked from this model.

Before you generate a report, in the Settings dialog box, on the Reports tab, if you select User
document IDs in requirements tables, links with these short names are included throughout
the report when referring to a requirements document. When you click a short name link in a
report, the requirements document associated with that document ID opens.

When your requirements documents have long path names that can clutter the report, select the
User document IDs in requirements tables option. This option is disabled by default, as you
can see in the examples in this section.

• Document paths stored in the model — Click this link to open the requirements document in
its native application.

• Last modified — The date the requirements document was last modified.
• # links — The total number of links to a requirements document.

System

Each System section includes:

• An image of the model or model object. The objects with requirements are highlighted.

11 Review and Maintain Requirements Links

11-14

• A list of requirements associated with the model or model object. In this example, click the target
document name to open the requirements document associated with the
slvnvdemo_fuelsys_officereq model.

• A list of blocks in the top-level model that have requirements. In this example, only the MAP
sensor block has a requirement at the top level. Click the link next to Target: to open the
requirements document associated with the MAP sensor block.

 Create and Customize Requirements Traceability Reports

11-15

The preceding table does not include these blocks in the top-level model because:

• The fuel rate controller and engine gas dynamics subsystems are in dedicated chapters of the
report.

• The report lists Signal Builder blocks separately, in this example, in Table 3.3.
• A list of requirements associated with each signal group in any Signal Builder block, and a graphic

of that signal group. In this example, the Test inputs Signal Builder block in the top-level model
has one signal group that has a requirement link. Click the link under Target (document name
and location ID) to open the requirements document associated with this signal group in the
Test inputs block.

11 Review and Maintain Requirements Links

11-16

Chart

Each Chart section reports on requirements in Stateflow charts, and includes:

• A graphic of the Stateflow chart that identifies each state.
• A list of elements that have requirements.

To navigate to the requirements document associated with a chart element, click the link next to
Target.

 Create and Customize Requirements Traceability Reports

11-17

Report for Requirements in Model Blocks

If your model contains Model blocks that reference external models, the default report does not
include information about requirements in the referenced models. To generate a report that includes
requirements information for referenced models, you must have a license for the Simulink Report
Generator software. The report includes the same information and graphics for referenced models as
it does for the top-level model.

If you have a Simulink Report Generator license, before generating a requirements report, take the
following steps:

1 Open the model for which you want to create a requirements report. This workflow uses the
example model slvnvdemo_fuelsys_officereq.

2 To open the template for the default requirements report, at the MATLAB command prompt,
enter:

setedit requirements
3 In the Simulink Report Generator software window, in the far-left pane, click the Model Loop

component.

11 Review and Maintain Requirements Links

11-18

4 On the far-right pane, locate the Model reference field. If you cannot see the drop-down arrow
for that field, expand the pane.

5 In the Model reference field drop-down list, select Follow all model reference blocks.
6 To generate a requirements report for the open model that includes information about referenced

models, click the Report icon .

Customize Requirements Report

The Requirements Management Interface (RMI) uses the Simulink Report Generator software to
generate the requirements report. You can customize the requirements report using the RMI or the
Simulink Report Generator software:

• “Customize Requirements Report Using the RMI Settings” on page 11-19
• “Customize Requirements Report Using Simulink Report Generator” on page 11-22

Customize Requirements Report Using the RMI Settings

There are several options for customizing a requirements report using the Requirements Settings
dialog box.

 Create and Customize Requirements Traceability Reports

11-19

On the Report tab, select options that specify the contents that you want in the report.

Requirements Settings Report Option Description
Highlight the model before generating
report

Enables highlighting of Simulink objects with
requirements in the report graphics.

Include links in referenced libraries and
data dictionaries

Includes requirements links in referenced
libraries in the generated report.

Report objects with no links to requirements Includes lists of model objects that have no
requirements.

Show user tags for each reported link Lists the user tags, if any, for each reported link.
Use document IDs in requirements tables Uses a document ID, if available, instead of a

path name in the tables of the requirements
report. This capability prevents long path names
to requirements documents from cluttering the
report tables.

11 Review and Maintain Requirements Links

11-20

Requirements Settings Report Option Description
Include details from linked documents Includes additional content from linked

requirements. The following requirements
documents are supported:

• Microsoft Word
• Microsoft Excel
• IBM Rational DOORS

Include links to Simulink objects Includes links from the report to objects in
Simulink.

Use internal HTTP server to support
navigation from system browsers

Specifies use of internal MATLAB HTTP server
for navigation from generated report to
documents and model objects. By selecting this
setting, this navigation is available from system
browsers as long as the MATLAB internal HTTP
server is active on your local host. To start the
internal HTTP server, at the MATLAB command
prompt, type rmi('httpLink').

To see how these options affect the content of the report:

1 Open the slvnvdemo_fuelsys_officereq model:

slvnvdemo_fuelsys_officereq
2 In the Requirements Viewer tab, click Link Settings.
3 In the Requirements Settings dialog box, click the Report tab.
4 For this example, select Highlight the model before generating report.

When you select this option, before generating the report, the graphics of the model that are
included in the report are highlighted so that you can easily see which objects have
requirements.

5 To close the Requirements Settings dialog box, click Close.
6 Generate a requirements report. In the Requirements tab, select S.

The requirements report opens in a browser window so that you can review the content of the
report.

7 If you do not want to overwrite the current report when you regenerate the requirements report,
rename the HTML file, for example,
slvnvdemo_fuelsys_officereq_requirements_old.html.

The default report file name is model_name_requirements.html.
8 In the Apps tab, select Requirements Manager.
9 In the Requirements tab, select Share > Generate Model Traceablity Report.

• Show user tags for each reported link — The report lists the user tags (if any) associated
with each requirement.

• Include details from linked documents — The report includes additional details for
requirements in the following types of requirements documents.

 Create and Customize Requirements Traceability Reports

11-21

Requirements Document
Format

Includes in the Report

Microsoft Word Full text of the paragraph or subsection of the
requirement, including tables.

Microsoft Excel If the target requirement is a group of cells, the
report includes all those cells as a table. If the
target requirement is one cell, the report includes
that cell and all the cells in that row to the right
of the target cell.

IBM Rational DOORS By default, the report includes:

• DOORS Object Heading
• DOORS Object Text
• All other attributes except Created Thru,

attributes with empty string values, and
system attributes that are false.

Use the RptgenRMI.doorsAttribs function to
include or exclude specific attributes or groups of
attributes.

10 Close the Requirements Settings dialog box.
11 Generate a new requirements report. In the Requirements tab, select Share > Generate

Model Traceablity Report.
12 Compare this new report to the report that you renamed in step 7:

• User tags associated with requirements links are included.
• Details from the requirement content are included as specified in step 9.

13 When you are done reviewing the report, close the report and the model.

To see an example of including details in the requirements report, enter this command at the
MATLAB command prompt:

slvnvdemo_powerwindow_report

Customize Requirements Report Using Simulink Report Generator

If you have a license for the Simulink Report Generator software, you can further modify the default
requirements report.

At the MATLAB command prompt, enter the following command:

setedit requirements

The Report Explorer GUI opens the requirements report template that the RMI uses when generating
a requirements report. The report template contains Simulink Report Generator components that
define the structure of the requirements report.

If you click a component in the middle pane, the options that you can specify for that component
appear in the right-hand pane. For detailed information about using a particular component to
customize your report, click Help at the bottom of the right-hand pane.

11 Review and Maintain Requirements Links

11-22

In addition to the standard report components, Simulink Report Generator provides components
specific to the RMI in the Requirements Management Interface category.

Simulink Report Generator Component Report Information
Missing Requirements Block Loop (Simulink
Report Generator)

Applies all child components to blocks that have
no requirements

Missing Requirements System Loop
(Simulink Report Generator)

Applies all child components to systems that have
no requirements

Requirements Block Loop (Simulink Report
Generator)

Applies all child components to blocks that have
requirements

Requirements Documents Table (Simulink
Report Generator)

Inserts a table that lists requirements documents

Requirements Signal Loop (Simulink Report
Generator)

Applies all child components to signal groups
with requirements

Requirements Summary Table (Simulink
Report Generator)

Inserts a property table that lists requirements
information for blocks with associated
requirements

Requirements System Loop (Simulink Report
Generator)

Applies all child components to systems with
requirements

Requirements Table (Simulink Report
Generator)

Inserts a table that lists system and subsystem
requirements

Data Dictionary Traceability Table (Simulink
Report Generator)

Inserts a table that links data dictionary
information to requirements

MATLAB Code Traceability Table (Simulink
Report Generator)

Inserts a table that links MATLAB code to
requirements

Simulink Test Suite Traceability Table
(Simulink Report Generator)

Inserts a table that links a Simulink test suite to
requirements

To customize the requirements report, you can:

• Add or delete components.
• Move components up or down in the report hierarchy.
• Customize components to specify how the report presents certain information.

For more information, see the Simulink Report Generator documentation.

Generate Requirements Reports Using Simulink

When you have a model open in Simulink, the Model Editor provides two options for creating
requirements reports:

System Design Description Report

The System Design Description report describes a system design represented by the current Simulink
model.

You can use the System Design Description report to:

• Review a system design without having the model open.

 Create and Customize Requirements Traceability Reports

11-23

• Generate summary and detailed descriptions of the design.
• Assess compliance with design requirements.
• Archive the system design in a format independent of the modeling environment.
• Build a customized version of the report using the Simulink Report Generator software.

To generate a System Design Description report that includes requirements information:

1 Open the model for which you want to create a report.
2 In the Modeling tab, select Compare > System Design Description Report.
3 In the Design Description dialog box, select Requirements traceability.
4 Select any other options that you want for this report.
5 Click Generate.

As the software is generating the report, the status appears in the MATLAB command window.

The report name is the model name, followed by a numeral, followed by the extension that reflects
the document type (.pdf, .html, etc.).

If your model has linked requirements, the report includes a chapter, Requirements Traceability,
that includes:

• Lists of model objects that have requirements with hyperlinks to display the objects
• Images of each subsystem, highlighting model objects with requirements

Design Requirements Report

In the Apps tab, click Requirements Manager. In the Requirements tab, click Share > Generate
Model Traceability Report. This option creates a requirements report, as described in “Create
Default Requirements Report” on page 11-11.

To specify options for the report, select Share > Report Options. Before generating the report, on
the Report tab, set the options that you want. For detailed information about these options, see
“Customize Requirements Report” on page 11-19.

See Also

More About
• “Report Requirements Information” on page 4-10
• “Requirement Links” on page 2-32

11 Review and Maintain Requirements Links

11-24

Create Requirements Traceability Report for A Project
To create a report for requirements traceability data in a project:

1 Open your project.
2 At the MATLAB command prompt, enter the following:

rmi('projectreport')

The MATLAB Web browser opens, showing the traceability report for the project.

This top-level HTML report contains a separate section for Simulink model files, MATLAB code files,
and other files included in the project. For each individual file with one or more associated
requirements links, a separate HTML report, or sub-report, shows the requirements traceability data
for that file. The top-level report contains links to each sub-report.

If you have a MATLAB file with requirements traceability links that is not part of a project, you can
create a separate report for the MATLAB file using the rmi('report', matlabfilepath)
command. For more information, see rmi.

 Create Requirements Traceability Report for A Project

11-25

Validate Requirements Links

Validate Requirements Links in a Model
Check Requirements Links with the Model Advisor

To make sure that every requirements link in your Simulink model has a valid target in a
requirements document, run the Model Advisor Requirements consistency checks:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the Model Advisor to run a consistency check. In the Apps tab, click Requirements

Manager. In the Requirements tab, click Check Consistency.

In the Requirements Consistency Checking category, all the checks are selected. For this
tutorial, keep all the checks selected.

These checks identify the following problems with your model requirements.

Consistency Check Problem Identified
Identify requirement links with missing
documents

The Model Advisor cannot find the requirements
document. This might indicate a problem with the
path to the requirements document.

Identify requirement links that specify invalid
locations within documents

The Model Advisor cannot find the designated
location for the requirement. This check is
implemented for:

• Microsoft Word documents
• Microsoft Excel documents
• IBM Rational DOORS documents
• Simulink objects

11 Review and Maintain Requirements Links

11-26

Consistency Check Problem Identified
Identify selection-based links having
description fields that do not match their
requirements document text

The Description field for the link does not match
the requirements document text. When you create
selection-based links, the Requirements
Management Interface (RMI) saves the selected text
in the link Description field. This check is
implemented for:

• Microsoft Word documents
• Microsoft Excel documents
• IBM Rational DOORS documents
• Simulink objects

Identify requirement links with path type
inconsistent with preferences

The path to the requirements document does not
match the Document file reference field in the
Requirements Settings dialog box Selection
Linking tab. This might indicate a problem with the
path to the requirements document.

On Linux systems, this check is named Identify
requirement links with absolute path type. The
check reports a warning for each requirements links
that uses an absolute path.

Note For information about how the RMI resolves
the path to the requirements document, see
“Document Path Storage” on page 11-35.

The Model Advisor checks to see if any applications that have link targets are running:

• If your model has links to Microsoft Word or Microsoft Excel documents, the consistency
check requires that you close all instances of those applications. If you have one of these
applications open, it displays a warning and does not continue the checks. The consistency
checks must verify up-to-date stored copies of the requirements documents.

• If your model has links to DOORS requirements, you must be logged in to the DOORS
software. Your DOORS database must include the module that contains the target
requirements.

3 For this tutorial, make sure that you close both Microsoft Word and Microsoft Excel.
4 Click Run Selected Checks.

After the check is complete:

• The green circles with the check mark indicate that two checks passed.
• The yellow triangles with the exclamation point indicate that two checks generated warnings.

 Validate Requirements Links

11-27

The right-hand pane shows that two checks passed and two checks had warnings. The Report box
includes a link to the HTML report.

Keep the Model Advisor open. The next section describes how to interpret and fix the inconsistent
links.

Note To step through an example that uses the Model Advisor to check requirements links in an IBM
Rational DOORS database, run the “Managing Requirements for Fault-Tolerant Fuel Control System
(IBM Rational DOORS)” on page 7-59 example in the MATLAB command prompt.

Fix Invalid Requirements Links Detected by the Model Advisor

In “Check Requirements Links with the Model Advisor” on page 11-26, three requirements
consistency checks generate warnings in the slvnvdemo_fuelsys_officereq model.

Resolve Warning: Identify requirement links that specify invalid locations within documents

To fix the warning about attempting to link to an invalid location in a requirements document:

1 In the Model Advisor, select Identify requirement links that specify invalid locations within
documents to display the description of the warning.

This check identifies a link that specifies a location that does not exist in the Microsoft Word
requirements document, slvnvdemo_FuelSys_DesignDescription.docx. The link originates
in the Terminator1 block. In this example, the target location in the requirements document was
deleted after the requirement was created.

2 Get more information about this link:

a To navigate to the Terminator1 block, under Block, click the hyperlink.
b To open the “Outgoing Links Editor” on page 10-6 for this link, under Requirements, click

the hyperlink.
3 To fix the problem from the Outgoing Links dialog, do one of the following:

• In the Location field, specify a valid location in the requirements document.
• Delete the requirements link by selecting the link and clicking Delete.

4 In the Model Advisor, select the Requirements Consistency Checking category of checks.

11 Review and Maintain Requirements Links

11-28

5 Click Run Selected Checks again, and verify that the warning no longer occurs.

Resolve Warning: Identify selection-based links having description fields that do not match their
requirements document text

To fix the warnings about the Description field not matching the requirements document text:

1 In the Model Advisor, click Identify selection-based links having description fields that do
not match their requirements document text to display the description of the warning.

The first message indicated that the model contains a link to a bookmark named
Simulink_requirement_item_7 in the requirements document that does not exist.

In addition, this check identified the following mismatching text between the requirements
blocks and the requirements document:

• The Description field in the Test inputs Signal Builder block link is Normal mode of
operation. The requirement text is The simulation is run with a throttle input that
ramps from 10 to 20 degrees over a period of two seconds, then back to 10 degrees
over the next two seconds. This cycle repeats continuously while the engine is held at
a constant speed.

• The Description field in the MAP Estimate block link is Manifold pressure failure. The
requirement text in slvnvdemo_FuelSys_DesignDescription.docx is Manifold
pressure failure mode.

 Validate Requirements Links

11-29

2 Get more information about this link:

a To navigate to a block, under Block, click the hyperlink.
b To open the “Outgoing Links Editor” on page 10-6 for this link, under Current Description,

click the hyperlink.
3 Fix this problem in one of two ways:

• In the Model Advisor, click Update. This action automatically updates the Description field
for that link so that it matches the requirement.

• In the Link Editor, manually edit the link from the block so that the Description field matches
the selected requirements text.

4 In the Model Advisor, select the Requirements Consistency Checking category of checks.
5 Click Run Selected Checks again, and verify that the warning no longer occurs.

Validate Requirements Links in a Requirements Document
Check Links in a Requirements Document

To check the links in a requirements document:

1 At the MATLAB command prompt, enter:

rmi('checkdoc',docName)

docName is a character vector that represents one of the following:

• Module ID for a DOORS requirements document
• Full path name for a Microsoft Word requirements document
• Full path name for a Microsoft Excel requirements document

The rmi function creates and displays an HTML report that lists all requirements links in the
document.

The report highlights invalid links in red. For each invalid link, the report includes brief details
about the problem and a hyperlink to the invalid link in the requirements document. The report
groups together links that have the same problem.

2 Double-click the hyperlink under Document content to open the requirements document at the
invalid link.

The navigation controls for the invalid link has a different appearance than the navigation
controls for the valid links.

3 When there are invalid links in your requirements document, you have the following options:

If you want to... Do the following...
Fix the invalid links Follow the instructions in “Fix Invalid Links

in a Requirements Document” on page 11-
31.

Keep the changes to the navigation controls
without fixing the invalid links

Save the requirements document.

11 Review and Maintain Requirements Links

11-30

If you want to... Do the following...
Ignore the invalid links Close the requirements document without

saving it.

When Multiple Objects Have Links to the Same Requirement

When you link multiple objects to the same requirement, only one navigation object is inserted into
the requirements document. When you double-click that navigation object, all of the linked model
objects are highlighted.

If you check the requirements document using the 'checkdoc' option of the rmi function and the
check detects a navigation object that points to multiple objects, the check stops and displays the
following dialog box.

You have two options:

• If you click Yes, or you close this dialog box, the RMI creates additional navigation objects, one for
each model object that links to that requirement. The document check continues, but the RMI
does not recheck that navigation; the report only shows one link for that requirement. To rerun
the check so that all requirements are checked, at the top of the report, click Refresh.

• If you click No, the document check continues, and the report identifies that navigation object as
a broken link.

Fix Invalid Links in a Requirements Document

Using the report that the rmi function creates, you may be able to fix the invalid links in your
requirements document.

In the following example, rmi cannot locate the model specified in two links.

To fix invalid links:

 Validate Requirements Links

11-31

1 In the report, under Document content, click the hyperlink associated with the invalid
requirement link.

The requirements document opens with the requirement text highlighted.
2 In the requirements document, depending on the document format, take these steps:

• In DOORS:

a Select the navigation control for an invalid link.
b Select MATLAB > Select item.

• In Microsoft Word, double-click the navigation control.

A dialog box opens that allows you to fix, reset, or ignore all the invalid links with a given
problem.

3 Click one of the following options.

To... Click...
Navigate to and select a new target model or new target
objects for these broken links.

Fix all

Reset the navigation controls for these invalid links to
their original state, the state before you checked the
requirements document.

Reset all

Make no changes to the requirements document. Any
modifications rmi made to the navigation controls
remain in the requirements document.

Cancel

4 Save the requirements document to preserve the changes made by the rmi function.

Validation of Requirements Links
Requirements links in a model can become outdated when requirements change over time. Similarly,
links in requirements documents may become invalid when your Simulink model changes, for
example, when the model, or objects in the model, are renamed, moved, or deleted. The Simulink
Requirements software provides tools that allow you to detect and resolve these problems in the
model or in the requirements document.

• “When to Check Links in a Requirements Document” on page 11-32
• “How the rmi Function Checks a Requirements Document” on page 11-33

When to Check Links in a Requirements Document

When you enable Modify destination for bidirectional linking and create a link between a
requirement and a Simulink model object, the RMI software inserts a navigation control into your
requirements document. These links may become invalid if your model changes.

To check these links, the 'checkDoc' option of the rmi function reviews a requirements document
to verify that all the navigation controls represent valid links to model objects. The checkDoc
command can check the following types of requirements documents:

• Microsoft Word
• Microsoft Excel

11 Review and Maintain Requirements Links

11-32

• IBM Rational DOORS

The rmi function only checks requirements documents that contain navigation controls; to check
links in your Simulink model, see “Validate Requirements Links in a Model” on page 11-26.

Note For more information about inserting navigation controls in requirements documents, see:

• “Insert Navigation Objects in Microsoft Office Documents” on page 6-11
• “Insert Navigation Objects into IBM Rational DOORS Requirements” on page 7-35

How the rmi Function Checks a Requirements Document

rmi performs the following actions:

• Locates all links to Simulink objects in the specified requirements document.
• Checks each link to verify that the target object is present in a Simulink model. If the target object

is present, rmi checks that the link label matches the target object.
• Modifies the navigation controls in the requirements document to identify any detected problems.

This allows you to see invalid links at a glance:

• Valid link:
•

Invalid link:

 Validate Requirements Links

11-33

Delete Requirements Links from Simulink Objects

Delete a Single Link from a Simulink Object
If you have an obsolete link to a requirement, delete it from the model object.

To delete a single link to a requirement from a Simulink model object:

1 Right-click a model object and select Requirements > Open Outgoing Links dialog.
2 In the top-most pane of the Link Editor, select the link that you want to delete.
3 Click Delete.
4 Click Apply or OK to complete the deletion.

Delete All Links from a Simulink Object
To delete all links to requirements from a Simulink model object:

1 Right-click the model object and select Requirements > Delete All Outgoing Links
2 Click OK to confirm the deletion.

This action deletes all requirements at the top level of the object. For example, if you delete
requirements for a subsystem, this action does not delete any requirements for objects inside the
subsystem; it only deletes requirements for the subsystem itself. To delete requirements for child
objects inside a subsystem, Model block, or Stateflow chart, you must navigate to each child
object and perform these steps for each object from which you want to delete requirements.

Delete All Links from Multiple Simulink Objects
To delete all requirements links from a group of Simulink model objects in the same model diagram
or Stateflow chart:

1 Select the model objects whose requirements links you want to delete.
2 Right-click one of the objects and select Requirements > Delete All Outgoing Links.
3 Click OK to confirm the deletion.

This action deletes all requirements at the top level of each object. It does not delete
requirements for child objects inside subsystems, Model blocks, or Stateflow charts.

11 Review and Maintain Requirements Links

11-34

Document Path Storage
When you create a requirements link, the RMI stores the location of the requirements document with
the link. If you use selection-based linking or browse to select a requirements document, the RMI
stores the document location as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab. The available settings are:

• Absolute path
• Path relative to current folder
• Path relative to model folder
• Filename only (on MATLAB path)

You can also manually enter an absolute or relative path for the document location. A relative path
can be a partial path or no path at all, but you must specify the file name of the requirements
document. If you use a relative path, the document is not constrained to a single location in the file
system. With a relative path, the RMI resolves the exact location of the requirements document in
this order:

1 The software attempts to resolve the path relative to the current MATLAB folder.
2 When there is no path specification and the document is not in the current folder, the software

uses the MATLAB search path to locate the file.
3 If the RMI cannot locate the document relative to the current folder or the MATLAB search path,

the RMI resolves the path relative to the model file folder.

The following examples illustrate the procedure for locating a requirements document.

Relative (Partial) Path Example
Current MATLAB folder C:\work\scratch
Model file C:\work\models\controllers\pid.mdl
Document link ..\reqs\pid.html
Documents searched for
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

Relative (No) Path Example
Current MATLAB folder C:\work\scratch
Model file C:\work\models\controllers\pid.mdl
Requirements document pid.html
Documents searched for
(in order)

C:\work\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Example
Current MATLAB folder C:\work\scratch

 Document Path Storage

11-35

Model file C:\work\models\controllers\pid.mdl
Requirements document C:\work\reqs\pid.html
Documents searched for C:\work\reqs\pid.html

11 Review and Maintain Requirements Links

11-36

How to Include Linked Requirements Details in Generated
Report

The requirements report is a feature in RMI that scans the Simulink model for links to external
requirements documents and generates a report. When documents are available for reading during
requirements report generation, you have an option to insert referenced document fragments into the
generated content to produce a more detailed report.

Open Example Model and Load RMI Links Data.

This example uses the Power Window Controller model and relies on an externally stored set of links.
See “Managing Requirements Without Modifying Simulink Model Files” on page 11-44 example for a
detailed demonstration of external storage feature in RMI.

Run the following commands to enable externally stored links, associate the example model with
externally stored RMI data, and open the Simulink model.

rmipref('StoreDataExternally', true);
rmimap.map('slvnvdemo_powerwindowController', 'slvnvdemo_powerwindowOffice.slmx');

Mapping ...\slrequirements-ex02666684\slvnvdemo_powerwindowController.slx to ...\slrequirements-ex02666684\slvnvdemo_powerwindowOffice.slmx

open_system('slvnvdemo_powerwindowController');

Navigate Links to See Target Content in Documents

Highlight links in the model to locate objects with links and navigate to documents. In the Apps tab
open the Requirements Manager. In the Requirements tab, click Highlight Links. Alternatively,
evaluate the following code.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

The included links demonstrate several possible styles of linking with Microsoft Office documents:

• The control subsystem links to a major subheader in the Word document. Evaluate the code to
navigate to the control subsystem.

rmidemo_callback('locate','slvnvdemo_powerwindowController/control');

• Both truth tables link to a subheader and a table. Evaluate the code to navigate to the Truth
Table and Truth Table1 blocks.

rmidemo_callback('locate',{'slvnvdemo_powerwindowController/Truth Table', ...
 'slvnvdemo_powerwindowController/Truth Table1'});

• Driver-side Mux1 links to a subheader including some bullet points. Evaluate the code to navigate
to the Mux1 block.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Mux1');

• Passenger-side Mux4 links to just a subheader. Evaluate the code to navigate to the Mux4 block.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Mux4');

 How to Include Linked Requirements Details in Generated Report

11-37

Requirements Report Without Document Fragments

• In the Simulink model, in the Requirements tab, click Share > Report Options.
• Uncheck Include details from linked documents in the Report tab of Requirements Settings

dialog.

• In the Simulink model in the Requirements tab, click Share > Generate Model Traceability
Report.

• Note that the tables in the report include only short labels of links. These are the same string
labels you see in the object context menus and in the Link Editor dialog box.

11 Review and Maintain Requirements Links

11-38

Requirements Report with Documents Content Inserted

• In the Simulink model in the Requirements tab, click Share > Report Options.
• This time, check Include details from linked documents.
• Re-generate the report by clicking Share > Generate Model Traceability Report.
• When the target range in a Microsoft Word document includes a table, the table is now included in

generated report.

• When the target location in Microsoft Word is a subheader, child content is included in generated
report. Use this feature with caution: linking to a major subheader in the document could mean
large amounts of text are copied from the document into the report.

 How to Include Linked Requirements Details in Generated Report

11-39

• When the target location is a range of cells in Microsoft Excel, the target worksheet fragment is
inserted in the report.

• When the target location is a single cell in Microsoft Excel worksheet, the content of cells to the
right of the target cell is also inserted into the report.

11 Review and Maintain Requirements Links

11-40

Include IBM Rational DOORS Attributes in RMI Report

For users linking with IBM Rational DOORS, RMI provides more control over which object attributes
to include in the requirements tables.

 How to Include Linked Requirements Details in Generated Report

11-41

• The default configuration will include DOORS Object Heading, DOORS Object Text and all other
attributes except: "Created Thru", all attributes with empty string values, and system attributes
that are false.

• The list of attribute names to include in generated report is stored as part of RMI settings under
user prefdir.

• Use the RptgenRMI.doorsAttribs to include/exclude certain attributes and/or groups of
attributes.

current_settings = RptgenRMI.doorsAttribs('show')

current_settings = 6x1 cell
 {'Object Text' }
 {'$AllAttributes$' }
 {'$NonEmpty$' }
 {'-Created Thru' }

11 Review and Maintain Requirements Links

11-42

 {'+Last Modified By'}
 {'+Last Modified On'}

help RptgenRMI.doorsAttribs

RptgenRMI.doorsAttribs is a function.

Cleanup

Cleanup commands. Clears open requirement sets without saving changes, and closes open models
without saving changes.

slreq.clear;
bdclose all;

 How to Include Linked Requirements Details in Generated Report

11-43

Managing Requirements Without Modifying Simulink Model
Files

You can store link data for Simulink models by storing link data in the Simulink model .slx file or
storing links in an external .slmx file.

Use external link storage to manage changes to the model file separately from changes to the
requirements links. Additionally, using external link storage allows you to manage multiple sets of
requirements links for the same model, by loading different .slmx files.

This example shows how to work with externally stored RMI links. Click Open Example to create a
working folder of the example files. Run the following commands:

rmimap.map('slvnvdemo_powerwindowController','clear');

Nothing to clear for ...\slrequirements-ex04732634\slvnvdemo_powerwindowController.slx

open_system('slvnvdemo_powerwindowController');
rmipref('UnsecureHttpRequests',true);

Set Up Requirements Manager to Work with Links

1 In the Apps tab, open Requirements Manager.
2 In the Requirements tab, ensure Layout > Requirements Browser is selected.
3 In the Requirements Browser, in the View drop-down menu, select Links.

In this example, you will work exclusively in the Requirements tab and any references to toolstrip
buttons are in this tab.

Configure RMI to Store Links Externally

1 In the Requirements tab, select Link Settings > Default Link Storage. This opens the
Requirements Settings dialog box.

2 Select Store externally (in a separate *.slmx file).

rmipref('StoreDataExternally',true);

11 Review and Maintain Requirements Links

11-44

The default file name for saving requirements links data is ModelName.slmx. The links file must be
in the same folder as the model for the links to resolve.

Creating and Managing RMI Links

Create a link from model to document.

1 Open the PowerWindowSpecification.docx file in the current directory.
2 Select the subheader passenger input consists of a vector with three elements under the High

Level Discrete Event Control Specification section.
3 Find the block Mux4.

rmidemo_callback('locate','slvnvdemo_powerwindowController/Mux4');

Right click Mux4 and select Requirements > Link to Selection in Word.

You can also enter the following to create the link:

testReqLink = rmi('createEmpty');
testReqLink.description = 'testReqLink';
testReqLink.doc = 'PowerWindowSpecification.docx';
testReqLink.id = '?passenger input consists of a vector with three elements';

Create the link:

rmi('set','slvnvdemo_powerwindowController/Mux4',testReqLink)

 Managing Requirements Without Modifying Simulink Model Files

11-45

If the model is still highlighted, the Mux4 block highlights to indicate associated requirements data.
New link information is stored separately from the model and saves when the model is saved.

Saving Requirements Links Data to External Files

When saving requirements data externally, you can save changes to requirements by:

• Clicking Save or Save As the Simulink model, even if the model does not have unsaved changes.
• Closing the model. You will be prompted to save links changes.
• Clicking Link Settings > Save Links As.

Click Link Settings > Save Links As and save them with the name
slvnvdemo_powerwindowController.slmx.

Close the model.

close_system('slvnvdemo_powerwindowController',1)

Save the links file with the default ModelName.slmx name in the model folder, or choose a different
file name and/or location.

Loading Requirements Links from External Files

When you open a model, the RMI will try to load requirements links data from the recently used
location for this model. You may also select Load Links to choose a different .slmx or .req file. In
this way you can use several sets of links with the same model. For example, you can use links to
design change descriptions that are different from links to original design specifications.

Reopen the model and select Load Links to open a file browser and point to
slvnvdemo_powerwindowRequirements.slmx in the working directory, or evaluate the following
code.

open_system('slvnvdemo_powerwindowController');
otherReqFile = 'slvnvdemo_powerwindowRequirements.slmx';
rmimap.map('slvnvdemo_powerwindowController', otherReqFile);

Mapping ...\slrequirements-ex04732634\slvnvdemo_powerwindowController.slx to ...\slrequirements-ex04732634\slvnvdemo_powerwindowRequirements.slmx

Click Highlight Links in the toolstrip to confirm that an alternative set of links is now associated
with the model, or evaluate the following code.

rmi('highlightModel','slvnvdemo_powerwindowController');

You can navigate and modify these links in the same way you would work with embedded (in-model)
links.

Moving RMI Links from Internal to External Storage

A model with existing embedded requirements links can be converted to external storage. Link data
will no longer be stored in .slx file, but in a new .slmx file. Try this out with the following steps.

Open another model that has internally stored RMI data by evaluating the following code.

open_system('slvnvdemo_fuelsys_officereq');

11 Review and Maintain Requirements Links

11-46

Select Link Settings > Save Links As Link Set File to open a file browser. Choose a file name for
the new external .slmx file and click OK. The model is resaved with no embedded links, and a
new .slmx file is created. You can also evaluate the following code.

rmidata.saveAs('slvnvdemo_fuelsys_officereq','slvnvdemo_fuelsys_officereq.slmx');

The requirements links now depend on the external file.

Click Highlight Links to confirm that the link data is available, or evaluate the following code.

rmi('highlightModel','slvnvdemo_fuelsys_officereq');

Close the model manually and delete the external .slmx file, or evaluate the following code.

close_system('slvnvdemo_fuelsys_officereq',1);

Use the following code to delete the file:

rmidemo_callback('remove','slvnvdemo_fuelsys_officereq.slmx')

Manually reopen the model or evaluate the following code.

open_system('slvnvdemo_fuelsys_officereq');

Click Highlight Links or evaluate the following to highlight the links:

rmi('highlightModel', 'slvnvdemo_fuelsys_officereq')

Nothing is highlighted because the data is no longer available. Recreate the
slvnvdemo_fuelsys_officereq.slmx file and map it to the slvndemo_fuelsys_officereq
Simulink model by evaluating the following code.

rmimap.map('slvnvdemo_fuelsys_officereq','backup_reqs.slmx');

Mapping ...\slrequirements-ex04732634\slvnvdemo_fuelsys_officereq.slx to ...\slrequirements-ex04732634\backup_reqs.slmx

rmidata.saveAs('slvnvdemo_fuelsys_officereq','slvnvdemo_fuelsys_officereq.slmx');

Points to keep in mind before you move internally stored links to an external file:

• You will need to carry an extra .slmx file along with the model file.
• Non-default file name and location associations are stored in user preferences. If you move or

rename the .slmx file outside MATLAB, you will have to manually point RMI to the new location
when the model is reopened.

• When one user has configured a non-default location or name for the .slmx file associated with
the model, other RMI users will need to manually select Load links when they open the model.
The specified location will persist in each user's preferences and does not need to change unless
files are moved or renamed again.

Moving RMI Links from External to Internal Storage

To embed RMI data with the Simulink model, so that all information is in one place and you do not
need to track extra files, select Link Settings > Save Links in Model File. The external .slmx file
still exists, but it is not read when you reopen the model that now has embedded RMI data. You can
try this out with the slvnvdemo_fuelsys_officereq.slx model from the previous section.

Alternatively, evaluate the following code.

 Managing Requirements Without Modifying Simulink Model Files

11-47

rmipref('StoreDataExternally',false);
save_system('slvnvdemo_fuelsys_officereq');

Points to keep in mind before you embed RMI data with the model file:

• Every change to RMI links will modify the model file.
• External .slmx files are disregarded when .slx file contains traceability links data.

Cleanup

Clear the open requirement sets and link sets. Close all open models.

slreq.clear;
bdclose 'all';

11 Review and Maintain Requirements Links

11-48

Requirements Management Interface

12

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 13-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 13-7
• “Perform Functional Testing and Analyze Test Coverage” on page 13-9
• “Analyze Code and Test Software-in-the-Loop” on page 13-12

13

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data, documents, models,

and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.

13 Verification and Validation

13-2

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

13-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

13 Verification and Validation

13-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

13-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” on page 11-26
• “Customize Requirements Traceability Report for Model” on page 11-11

External Websites
• Requirements-Based Testing Workflow

13 Verification and Validation

13-6

https://youtu.be/0STxZbqOUXg

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

 Analyze a Model for Standards Compliance and Design Errors

13-7

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.
c To review the configuration parameter settings that violate MAB style guidelines, click on

the Check model diagnostic parameters check. The analysis results appear in the right
pane and include the recommended action.

d Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and
update the model diagnostic parameters. Save the model.

e To verify that your model passes, rerun the check. Repeat steps c and d, if necessary, to
reach compliance.

f To generate a results report of the Simulink Check checks, select the MAB Checks node,
and then, in the right pane click Generate Report....

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 In the right pane, select Show report after run and Run Selected Checks.
4 In the generated report, click a Simulink Design Verifier Results Summaryhyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click Highlight analysis results on model. Click
the Compute target speed subsystem, outlined in red. The Simulink Design Verifier
Results Inspector window provides derived ranges that can help you understand the source
of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

13 Verification and Validation

13-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager. At the command line, enter:

 Perform Functional Testing and Analyze Test Coverage

13-9

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.

The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes select the Results in the Test Manager. The aggregated coverage results

show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

13 Verification and Validation

13-10

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output to Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

13-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
You can analyze code to detect errors, check standards compliance, and evaluate key metrics such as
length and cyclomatic complexity. For handwritten code, you typically check for run-time errors with
static code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, you refine the code and add tests.

In this example, you generate code and demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Then you compare the code coverage
to the model coverage. Based on test results, add tests and modify the model to regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics and defects. To produce more MISRA compliant
code from your model, you use the code generation and Model Advisor. To check whether the code is
MISRA compliant, you use the Polyspace MISRA C:2012 checker and report generation capabilities.
For this example, you use the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

13 Verification and Validation

13-12

Run Code Generator Checks

Before you generate code from your model, use the Code Generation Advisor to check your model so
that it generates code more compliant with MISRA C and more compatible with Polyspace.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized. The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

The Code Generation Advisor checks whether the model includes blocks or configuration settings
that are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this

 Analyze Code and Test Software-in-the-Loop

13-13

model, the check for incompatible blocks passes, but some configuration settings are
incompatible with MISRA compliance and Polyspace checking.

4 Click the check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, use the Model Advisor to check your model for MISRA C
and Polyspace compliance. This example shows you how to use the Model Advisor to check your
model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, in the Simulink Editor, right-click Compute target speed and select

Polyspace > Options.
4 Click Configure to choose more advanced Polyspace analysis options in the Polyspace

configuration window.

13 Verification and Validation

13-14

5 On the left pane, click Coding Standards & Code Metrics, then select Calculate Code
Metrics to enable code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks. You can see the
progress of the analysis in the MATLAB Command Window. After the analysis finishes, the
Polyspace environment opens.

Review Results

The Polyspace environment shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify
every result. Because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

 Analyze Code and Test Software-in-the-Loop

13-15

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration to choose a subset of MISRA rules

in the Polyspace configuration.
4 Click Configure.
5 In the Polyspace window, on the left pane, click Coding Standards & Code Metrics. Then

select Check MISRA C:2012 and, from the drop-down list, select single-unit-rules. Now
Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, Polyspace found only two
violations.

13 Verification and Validation

13-16

When you integrate this model with its parent model, you can add the rest of the MISRA C:2012
rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. If you want to generate a report every time you run an analysis, see Generate
report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Test Code Against Model Using Software-in-the-Loop Testing
You previously showed that the model functionality meets its requirements by running test cases
based on those requirements. Now run the same test cases on the generated code to show that the
code produces equivalent results and fulfills the requirements. Then compare the code coverage to
the model coverage to see the extent to which the tests exercised the generated code.

1 In MATLAB, in the project window, open the tests folder, then open SILTests.mldatx. The
file opens in the Test Manager.

 Analyze Code and Test Software-in-the-Loop

13-17

2 Review the test case. On the Test Browser pane, navigate to SIL Equivalence Test Case.
This equivalence test case runs two simulations for the
simulinkCruiseErrorAndStandardsExample model using a test harness.

• Simulation 1 is a model simulation in normal mode.
• Simulation 2 is a software-in-the-loop (SIL) simulation. For the SIL simulation, the test case

runs the code generated from the model instead of running the model.

The equivalence test logs one output signal and compares the results from the simulations. The
test case also collects coverage measurements for both simulations.

3 Run the equivalence test. Select the test case and click Run.
4 Review the results in the Test Manager. In the Results and Artifacts pane, select SIL

Equivalence Test Case to see the test results. The test case passed and the results show that
the code produced the same results as the model for this test case.

5 Expand the Coverage Results section of the results. The coverage measurements show the
extent to which the test case exercised the model and the code. When you run multiple test
cases, you can view aggregated coverage measurements in the results for the whole run. Use the
coverage results to add tests and meet coverage requirements, as shown in “Perform Functional
Testing and Analyze Test Coverage” (Simulink Check).

You can also test the generated code on your target hardware by running a processor-in-the-loop
(PIL) simulation. By adding a PIL simulation to your test cases, you can compare the test results and
coverage results from your model to the results from the generated code as it runs on the target
hardware. For more information, see “Processor-in-the-Loop Simulation” (Embedded Coder).

13 Verification and Validation

13-18

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

13-19

	Requirements Definition
	Author Requirements in Simulink
	Author and Edit Requirements Content by Using Microsoft Word
	Customize Requirements Browser View
	Filter Requirements Content

	Requirement Types
	Import Requirements from Third-Party Applications
	Add Requirements to the Path
	Select an Import Mode
	Differences Between Importing and Direct Linking

	Import Requirements from Microsoft Office Documents
	Import Options for Microsoft Word Documents
	Import Options for Microsoft Excel Spreadsheets

	Import Requirements from ReqIF Files
	Choosing an Import Mapping
	Importing Requirements
	Importing Links
	Mapping ReqIF Attributes in Simulink Requirements

	Import Requirements from IBM DOORS Next
	Configure IBM DOORS Next Session
	Import DOORS Next Requirements
	Update Referenced Requirements
	Navigate from Referenced Requirements to Requirements in DOORS Next
	Linking with Referenced Requirements

	Import Requirements from IBM Rational DOORS
	Configure IBM Rational DOORS Session
	Import an Entire Requirements Module
	Import a Subset of Requirements from a Module
	Update the Requirement Set
	Navigate Between Referenced Requirements and Requirements in IBM Rational DOORS

	Export Requirements to ReqIF Files
	Choosing an Export Mapping
	Exporting Requirements
	Exporting Links

	Define Requirements Hierarchy
	Requirement Sets
	Custom Attributes of Requirement Sets

	Create Requirement Set File by Using the Simulink® Requirements™ API
	Customize Requirements with Custom Attributes
	Define Custom Attributes for Requirement Sets
	Set Custom Attribute Values for Requirements
	Edit Custom Attributes
	Custom Attributes for Referenced Requirements
	Import Custom Attributes
	Limitations

	Update Imported Requirements
	Update a Requirement Set
	Update Requirements with Change Tracking Enabled
	Considerations for Microsoft Word Documents

	Import and Update Requirements from a Microsoft Word Document
	Export Requirement Sets and Link Sets to Previous Versions of Simulink Requirements
	Export Requirement Sets
	Export Link Sets

	Use Command-line API to Document Simulink Model in Requirements Editor
	Round-Trip Importing and Exporting for ReqIF Files
	Considerations for Importing Requirements
	Edit Imported Content
	Link Requirements to Items in MATLAB and Simulink
	Considerations for Exporting Requirements

	Best Practices and Guidelines for ReqIF Round Trip Workflows
	Managing Requirement Custom IDs
	Guidelines for Updating Referenced Requirements Content
	Guidelines for Editing Referenced Requirements Content
	Guidelines for Adding Details to Imported Requirements
	Guidelines for Exporting Requirements to ReqIF Files

	Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API
	Create and Edit Attribute Mappings
	Edit the Attribute Mapping for Imported Requirements
	Specify Default ReqIF Requirement Type
	Specify ReqIF Template

	Import Requirements from IBM Rational DOORS by using the API

	Requirements Traceability and Consistency
	Link Blocks and Requirements
	Work with Simulink Annotations

	Track Requirement Links with a Traceability Matrix
	Generate a Traceability Matrix
	Modify the Traceability Matrix View
	Work with Links in the Traceability Matrix
	Export the Traceability Matrix
	Work Programmatically with a Traceability Matrix

	Visualize Links with a Traceability Diagram
	Generate a Traceability Diagram
	Use the Traceability Diagram
	Modify the Traceability Diagram View
	Export the Diagram

	Assess Allocation and Impact
	Assess Requirements Allocation
	Visualize Change Propagation

	Requirement Links
	Linkable Items
	Link Types
	Review Requirement Links
	Resolve Links
	Load Link Information
	Unload Link Information
	Delete a Link Set

	Define Custom Requirement and Link Types
	Create and Register Custom Requirement and Link Types
	Inherited Functionality from the Built-In Type
	Set the Type in the Requirements Editor

	Customize Links with Custom Attributes
	Define Custom Attributes for Link Sets
	Set Custom Attribute Values for Links
	Edit Custom Attributes

	Requirements Consistency Checks
	Check Requirements Consistency in Model Advisor

	Manage Navigation Backlinks in External Requirements Documents
	Insert Backlinks in External Requirements Documents

	Use Command-line API to Update or Repair Requirements Links
	Manage Custom Attributes for Links by Using the Simulink® Requirements™ API
	Make Requirements Fully Traceable with a Traceability Matrix
	Modeling System Architecture of Small UAV

	Requirements-Based Verification
	Review Requirements Implementation Status
	Implement Functional Requirements by Linking to Model Elements
	View the Implementation Status

	Review Requirements Verification Status
	Verify Functional Requirements
	Display Verification Status
	Update Verification Status by Running Tests or Analyses
	Include Verification Status in Report

	Validate Requirements by Analyzing Model Properties
	Justify Requirements
	Linking to a Test Script
	Linking to a Test Script Using the Outgoing Links Editor
	Linking to a Test Script Using the API
	Integrating Results from a MATLAB Unit Test Case

	Include Results from External Sources in Verification Status
	How to Populate Verification Results from External Sources

	Linking to a Result File
	Open Example Files
	Create and Register a Custom Link Type
	Create a Requirement Link
	View the Verification Status

	Integrating Results from a Custom-Authored MATLAB Script as a Test
	Integrating Results from an External Result file
	Integrating results from a custom authored MUnit script as a test
	Fix Requirements-Based Testing Issues

	Change Tracking and Team-Based Workflows
	Requirements-Based Development in Projects
	Organizing Requirements, Models, and Tests

	Track Changes to Requirement Links
	Enable Change Tracking for Requirement Links
	Review Changes to Requirements
	Resolve Change Issues
	Add Comments to Links
	Manually Check for Using Links Change Tracking

	Compare Requirements Sets
	Compare Two .slreqx Simulink Requirements Sets
	Review Changes in Source-Controlled Files

	Compare Link Sets
	Report Requirements Information
	Report Navigation Links

	Three-way AutoMerge Solution for Requirement Set and Link Set
	Configure Git environment for AutoMerge
	Select and Merge Branches in Git
	Limitations

	Merge Requirement Set and Link Set Files

	Requirements Management Interface Setup
	Configure Simulink Requirements for Interaction with Microsoft Office and IBM Rational DOORS
	Configure Simulink Requirements for Microsoft Office
	Configure Simulink Requirements for IBM Rational DOORS
	Configure Simulink Requirements for IBM DOORS Next

	Requirements Link Storage
	Save Requirements Links in External Storage
	Load Requirements Links from External Storage
	Move Internally Stored Requirements Links to External Storage
	Move Externally Stored Requirements Links to the Model File
	External Storage
	Guidelines for External Storage of Requirements Links
	Copying Model Objects and their Linked Requirements

	Supported Requirements Document Types
	Requirements Settings
	Selection Linking Tab
	Filter Requirements with User Tags

	Migrating Requirements Management Interface Data to Simulink® Requirements™

	Microsoft Office Traceability
	Link to Requirements in Microsoft Word Documents
	Link a Requirement in Word to a Simulink Block

	Link to Requirements in Excel Workbooks
	Navigate from a Model Object to Requirements in an Excel Workbook
	Create Requirements Links to the Workbook
	Link Multiple Model Objects to a Microsoft Excel Workbook
	Change Requirements Links

	Navigate to Requirements in Microsoft Office Documents from Simulink
	Enable Linking from Microsoft Office Documents to Simulink Objects
	Insert Navigation Objects in Microsoft Office Documents
	Customize Microsoft Office Navigation Objects
	Navigate Between Microsoft Office Requirement and Model

	Managing Requirements for Fault-Tolerant Fuel Control System (Microsoft Office)

	Requirements Traceability with IBM Rational DOORS
	Configure Simulink Requirements for IBM Rational DOORS Software
	Manually Install Additional Files for DOORS Software
	Address DXL Errors

	Link with Requirements in IBM DOORS Next
	Link and Trace Requirements with IBM DOORS Next
	Configure IBM DOORS Next Session
	Linking with Referenced Requirements
	Directly Linking DOORS Next Requirements
	Specifying and Updating the IBM DOORS Next Configuration

	Navigate to Requirements in IBM Rational DOORS Databases from Simulink
	Enable Linking from IBM Rational DOORS Databases to Simulink Objects
	Insert Navigation Objects into IBM Rational DOORS Requirements
	Navigate Between IBM Rational DOORS Requirement and Model Object
	Why Add Navigation Objects to IBM Rational DOORS Requirements?
	Customize IBM Rational DOORS Navigation Objects

	Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules
	Synchronize a Simulink Model to Create a Surrogate Module
	Create Links Between Surrogate Module and Formal Module in an IBM Rational DOORS Database
	Resynchronize IBM Rational DOORS Surrogate Module to Reflect Model Changes
	Navigate with the Surrogate Module
	Customize IBM Rational DOORS Synchronization
	Synchronization with IBM Rational DOORS Surrogate Modules
	Advantages of Synchronizing Your Model with a Surrogate Module

	Working with IBM Rational DOORS 9 Requirements
	Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)

	Simulink Traceability Between Model Objects
	Link Model Objects
	Link Objects in the Same Model
	Link Objects in Different Models

	Link Test Cases to Requirements Documents
	Establish Requirements Traceability for Testing

	Link Simulink Data Dictionary Entries to Requirements
	Link Signal Builder Blocks to Requirements and Simulink Model Objects
	Link Signal Builder Blocks to Requirements Documents
	Link Signal Builder Blocks to Model Objects

	Requirements Links for Library Blocks and Reference Blocks
	Introduction to Library Blocks and Reference Blocks
	Library Blocks and Requirements
	Copy Library Blocks with Requirements
	Manage Requirements on Reference Blocks
	Manage Requirements Inside Reference Blocks
	Links from Requirements to Library Blocks

	Navigate to Requirements from Model
	Navigate from Model Object
	Navigate from System Requirements Block

	Link to Requirements Modeled in Simulink

	MATLAB Code Traceability
	Requirements Traceability for MATLAB Code Lines
	Link MATLAB Code Lines to Requirements in a Requirement Set
	Link MATLAB Code Lines to Requirements Information in External Documents
	Enable or Disable Traceability Links Highlighting for MATLAB Code
	Remove Traceability Links from MATLAB Code Lines
	Traceability for MATLAB Code Lines

	Associate Traceability Information with MATLAB Code Lines in Simulink

	URL and Custom Traceability
	Requirement Links and Link Types
	Requirements Traceability Links
	Supported Model Objects for Requirements Linking
	Links and Link Types
	Link Type Properties
	Outgoing Links Editor

	Custom Link Types
	Create a Custom Requirements Link Type
	Implement Custom Link Types
	Why Create a Custom Link Type?
	Custom Link Type Functions
	Custom Link Type Registration
	Custom Link Type Synchronization

	Implement RMI Extension for Support of Custom Document Type

	Review and Maintain Requirements Links
	Highlight Model Objects with Requirements
	Highlight Model Objects with Requirements Using Model Editor
	Highlight Model Objects with Requirements Using Model Explorer

	Navigate to Simulink Objects from External Documents
	Provide Unique Object Identifiers
	Use the rmiobjnavigate Function
	Determine the Navigation Command
	Use the ActiveX Navigation Control
	Typical Code Sequence for Establishing Navigation Controls

	View Requirements Details for a Selected Block
	Identify Blocks with Links
	Configure Settings
	View Requirements Details
	Create a Requirement Annotation

	Generate Code for Models with Requirements Links
	How Requirements Information Is Included in Generated Code

	Create and Customize Requirements Traceability Reports
	Create Requirements Traceability Report for Model
	Customize Requirements Traceability Report for Model

	Create Requirements Traceability Report for A Project
	Validate Requirements Links
	Validate Requirements Links in a Model
	Validate Requirements Links in a Requirements Document
	Validation of Requirements Links

	Delete Requirements Links from Simulink Objects
	Delete a Single Link from a Simulink Object
	Delete All Links from a Simulink Object
	Delete All Links from Multiple Simulink Objects

	Document Path Storage
	Relative (Partial) Path Example
	Relative (No) Path Example
	Absolute Path Example

	How to Include Linked Requirements Details in Generated Report
	Managing Requirements Without Modifying Simulink Model Files

	Requirements Management Interface
	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012
	Test Code Against Model Using Software-in-the-Loop Testing

